Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq (original) (raw)
Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol.29, 1120–1127 (2011). CASPubMedPubMed Central Google Scholar
Cann, G.M. et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One7, e49144 (2012). CASPubMedPubMed Central Google Scholar
Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature498, 236–240 (2013). CASPubMedPubMed Central Google Scholar
Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell150, 1209–1222 (2012). CASPubMedPubMed Central Google Scholar
van Wolfswinkel, J.C., Wagner, D.E. & Reddien, P.W. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell15, 326–339 (2014). CASPubMedPubMed Central Google Scholar
Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell18, 675–685 (2010). CASPubMed Google Scholar
Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol.20, 1131–1139 (2013). CASPubMed Google Scholar
Durruthy-Durruthy, R. et al. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell157, 964–978 (2014). ArticleCASPubMedPubMed Central Google Scholar
Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature500, 593–597 (2013). CASPubMedPubMed Central Google Scholar
Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods6, 377–382 (2009). CASPubMed Google Scholar
Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc.5, 516–535 (2010). CASPubMed Google Scholar
Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep.2, 666–673 (2012). CASPubMed Google Scholar
Islam, S. et al. Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat. Protoc.7, 813–828 (2012). CASPubMed Google Scholar
Goetz, J.J. & Trimarchi, J.M. Transcriptome sequencing of single cells with Smart-Seq. Nat. Biotechnol.30, 763–765 (2012). CASPubMed Google Scholar
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc.9, 171–181 (2014). CASPubMed Google Scholar
Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods10, 1096–1098 (2013). CASPubMed Google Scholar
Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet.14, 618–630 (2013). CASPubMed Google Scholar
Datta, S. et al. Laser capture microdissection: big data from small samples. Histol. Histopathol.30, 1255–1269 (2015). CASPubMedPubMed Central Google Scholar
Canas, R.A., Canales, J., Gomez-Maldonado, J., Avila, C. & Canovas, F.M. Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiol.34, 1278–1288 (2014). CASPubMed Google Scholar
Erickson, H.S. et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat. Protoc.4, 902–922 (2009). CASPubMedPubMed Central Google Scholar
Morrison, J.A., Bailey, C.M. & Kulesa, P.M. Gene profiling in the avian embryo using laser capture microdissection and RT-qPCR. Cold Spring Harbor Protoc.2012, 1249–1262 (2012). Google Scholar
Grover, P.K., Cummins, A.G., Price, T.J., Roberts-Thomson, I.C. & Hardingham, J.E. A simple, cost-effective and flexible method for processing of snap-frozen tissue to prepare large amounts of intact RNA using laser microdissection. Biochimie94, 2491–2497 (2012). CASPubMed Google Scholar
Zechel, S., Zajac, P., Lonnerberg, P., Ibanez, C.F. & Linnarsson, S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol.15, 486 (2014). PubMedPubMed Central Google Scholar
Bandyopadhyay, U., Fenton, W.A., Horwich, A.L. & Nagy, M. Production of RNA for transcriptomic analysis from mouse spinal cord motor neuron cell bodies by laser capture microdissection. J. Vis. Exp.83, e51168 (2014). Google Scholar
Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev. Cell36, 681–697 (2016). CASPubMed Google Scholar
Cox, M.L. et al. Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp. Mol. Pathol.80, 183–191 (2006). CASPubMed Google Scholar
Goldsworthy, S.M., Stockton, P.S., Trempus, C.S., Foley, J.F. & Maronpot, R.R. Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol. Carcinog.25, 86–91 (1999). CASPubMed Google Scholar
Wang, W.Z., Oeschger, F.M., Lee, S. & Molnar, Z. High quality RNA from multiple brain regions simultaneously acquired by laser capture microdissection. BMC Mol. Biol.10, 69 (2009). PubMedPubMed Central Google Scholar
Parlato, R. et al. A preservation method that allows recovery of intact RNA from tissues dissected by laser capture microdissection. Anal. Biochem.300, 139–145 (2002). CASPubMed Google Scholar
Wang, H. et al. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA. BMC Genomics7, 97 (2006). PubMedPubMed Central Google Scholar
Sonne, S.B. et al. Optimizing staining protocols for laser microdissection of specific cell types from the testis including carcinoma in situ. PLoS One4, e5536 (2009). PubMedPubMed Central Google Scholar
Clement-Ziza, M., Munnich, A., Lyonnet, S., Jaubert, F. & Besmond, C. Stabilization of RNA during laser capture microdissection by performing experiments under argon atmosphere or using ethanol as a solvent in staining solutions. RNA14, 2698–2704 (2008). CASPubMedPubMed Central Google Scholar
Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc.1, 581–585 (2006). CASPubMed Google Scholar
Bengtsson, M., Hemberg, M., Rorsman, P. & Stahlberg, A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol. Biol.9, 63 (2008). PubMedPubMed Central Google Scholar
Trombetta, J.J. et al. Preparation of single-cell RNA-seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol.107, 4.22.1–4.22.17 (2014). Google Scholar
Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol.33, 503–509 (2015). CASPubMed Google Scholar
Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol.33, 495–502 (2015). CASPubMedPubMed Central Google Scholar
Durruthy-Durruthy, R., Gottlieb, A. & Heller, S. 3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data. Nat. Protoc.10, 459–474 (2015). CASPubMedPubMed Central Google Scholar
Junker, J.P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell159, 662–675 (2014). CASPubMed Google Scholar
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol.14, R36 (2013). PubMedPubMed Central Google Scholar
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7, 562–578 (2012). CASPubMedPubMed Central Google Scholar
Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics18, S96–104 (2002). PubMed Google Scholar
Zhang, W. et al. Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell Rep.4, 542–553 (2013). CASPubMed Google Scholar