Advances in the field of single-particle cryo-electron microscopy over the last decade (original) (raw)

References

  1. Grassucci, R.A., Taylor, D.J. & Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nat. Protoc. 2, 3239–3246 (2007).
    Article CAS Google Scholar
  2. Grassucci, R.A., Taylor, D. & Frank, J. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Nat. Protoc. 3, 330–339 (2008).
    Article CAS Google Scholar
  3. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).
    Article CAS Google Scholar
  4. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).
    Article CAS Google Scholar
  5. Scheres, S.H.W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).
    Article CAS Google Scholar
  6. Scheres, S.H.W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).
    Article CAS Google Scholar
  7. Zhang, X., Jin, L., Fang, Q., Hui, W.H. & Zhou, Z.H. 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472–482 (2010).
    Article CAS Google Scholar
  8. LeBarron, J. et al. Exploration of parameters in cryo-EM leading to an improved density map of the E. coli ribosome. J. Struct. Biol. 164, 24–32 (2008).
    Article CAS Google Scholar
  9. Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068 (2009).
    Article CAS Google Scholar
  10. Hashem, Y. et al. High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature 494, 385–389 (2013).
    Article CAS Google Scholar
  11. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).
    Article CAS Google Scholar
  12. Frank, J. et al. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444 (1995).
    Article CAS Google Scholar
  13. Bai, X.C., Fernandez, I.S., McMullan, G. & Scheres, S.H.W. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).
    Article Google Scholar
  14. Liu, Z. et al. Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit. Proc. Natl. Acad. Sci. USA 113, 12174–12179 (2016).
    Article CAS Google Scholar
  15. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).
    Article CAS Google Scholar
  16. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).
    Article CAS Google Scholar
  17. Jain, T., Sheehan, P., Crum, J., Carragher, B. & Potter, C.S. Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J. Struct. Biol. 179, 68–75 (2012).
    Article Google Scholar
  18. Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).
    Article CAS Google Scholar
  19. Russo, C.J. & Passmore, L.A. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).
    Article CAS Google Scholar
  20. Russo, C.J. & Passmore, L.A. Progress towards an optimal specimen support for electron cryomicroscopy. Curr. Opin. Struct. Biol. 37, 81–89 (2016).
    Article CAS Google Scholar
  21. Crowther, R.A. (ed.) The Resolution Revolution: Recent Advances in CryoEM (Methods in Enzymology Volume 579)(Academic Press/Elsevier, 2016).
  22. Danev, R. & Baumeister, W. Cryo-EM single particle analysis with the Volta phase plate. eLife 5, e13046 (2016).
    Article Google Scholar
  23. Lu, Z. et al. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168, 388–395 (2009).
    Article Google Scholar
  24. Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).
    Article CAS Google Scholar
  25. Fu, Z. et al. Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24, 2092–2101 (2016).
    Article CAS Google Scholar
  26. Bai, X., Rajendra, E., Yang, G., Shi, Y. & Scheres, S.H.W. Sampling the conformational space of the catalytic subunit of human g-secretase. eLife 4, e11182 (2015).
    Article Google Scholar
  27. Liu, Z. et al. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM. Protein Sci. http://dx.doi.org/10.1002/pro.306 (2016).
  28. Schüler, M. et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat. Struct. Mol. Biol. 13, 1092–1096 (2006).
    Article Google Scholar
  29. Armache, J.P. et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc. Natl. Acad. Sci. USA 107, 19748–19753 (2010).
    Article CAS Google Scholar
  30. Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, e03080 (2014).
    Article Google Scholar

Download references