Nilius, B. & Owsianik, G. Transient receptor potential channelopathies. Pflugers Arch.460, 437–450 (2010) ArticleCASPubMed Google Scholar
Nilius, B. et al. Gating of TRP channels: a voltage connection? J. Physiol. (Lond.)567, 35–44 (2005) ArticleCAS Google Scholar
Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science309, 897–903 (2005) ArticleADSCASPubMed Google Scholar
Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature450, 376–382 (2007) ArticleADSCASPubMed Google Scholar
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature475, 353–358 (2011) ArticleCASPubMedPubMed Central Google Scholar
Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997) ArticleADSCASPubMed Google Scholar
Cao, E., Cordero-Morales, J. F., Liu, B., Qin, F. & Julius, D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron77, 667–679 (2013) ArticleCASPubMedPubMed Central Google Scholar
Brederson, J. D., Kym, P. R. & Szallasi, A. Targeting TRP channels for pain relief. Eur. J. Pharmacol.716, 61–76 (2013) ArticleCASPubMed Google Scholar
Bai, X. C., Fernandez, I. S., McMullan, G. & Scheres, S. H. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife2, e00461 (2013) ArticlePubMedPubMed CentralCAS Google Scholar
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods10, 584–590 (2013) ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Jin, L., Fang, Q., Hui, W. H. & Zhou, Z. H. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell141, 472–482 (2010) ArticleCASPubMedPubMed Central Google Scholar
Mio, K. et al. The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J. Mol. Biol.367, 373–383 (2007) ArticleCASPubMed Google Scholar
Moiseenkova-Bell, V. Y., Stanciu, L. A., Serysheva, I. I., Tobe, B. J. & Wensel, T. G. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl Acad. Sci. USA105, 7451–7455 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Shigematsu, H., Sokabe, T., Danev, R., Tominaga, M. & Nagayama, K. A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J. Biol. Chem.285, 11210–11218 (2010) ArticleCASPubMed Google Scholar
Chung, M. K., Guler, A. D. & Caterina, M. J. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nature Neurosci.11, 555–564 (2008) ArticleCASPubMed Google Scholar
Myers, B. R., Bohlen, C. J. & Julius, D. A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron58, 362–373 (2008) ArticleCASPubMedPubMed Central Google Scholar
Lishko, P. V., Procko, E., Jin, X., Phelps, C. B. & Gaudet, R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron54, 905–918 (2007) ArticleCASPubMed Google Scholar
Boukalova, S., Marsakova, L., Teisinger, J. & Vlachova, V. Conserved residues within the putative S4–S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels. J. Biol. Chem.285, 41455–41462 (2010) ArticleCASPubMedPubMed Central Google Scholar
Boukalova, S., Teisinger, J. & Vlachova, V. Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel. Biochim. Biophys. Acta1833, 520–528 (2013) ArticleCASPubMed Google Scholar
Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal mechanisms of activation. Naturehttp://dx.doi.org/10.1038/nature12823 (this issue)
Latorre, R., Zaelzer, C. & Brauchi, S. Structure–functional intimacies of transient receptor potential channels. Q. Rev. Biophys.42, 201–246 (2009) ArticleCASPubMed Google Scholar
Long, S. B., Campbell, E. B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science309, 903–908 (2005) ArticleADSCASPubMed Google Scholar
Loukin, S., Su, Z. & Kung, C. Increased basal activity is a key determinant in the severity of human skeletal dysplasia caused by TRPV4 mutations. PLoS ONE6, e19533 (2011) ArticleADSCASPubMedPubMed Central Google Scholar
Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol.68, 685–717 (2006) ArticleCASPubMed Google Scholar
Susankova, K., Ettrich, R., Vyklicky, L., Teisinger, J. & Vlachova, V. Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J. Neurosci.27, 7578–7585 (2007) ArticleCASPubMedPubMed Central Google Scholar
Voets, T., Janssens, A., Droogmans, G. & Nilius, B. Outer pore architecture of a Ca2+-selective TRP channel. J. Biol. Chem.279, 15223–15230 (2004) ArticleCASPubMed Google Scholar
Binshtok, A. M., Bean, B. P. & Woolf, C. J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature449, 607–610 (2007) ArticleADSCASPubMed Google Scholar
Salazar, H. et al. Structural determinants of gating in the TRPV1 channel. Nature Struct. Mol. Biol.16, 704–710 (2009) ArticleCAS Google Scholar
Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science280, 69–77 (1998) ArticleADSCASPubMed Google Scholar
Inanobe, A., Matsuura, T., Nakagawa, A. & Kurachi, Y. Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels. Channels (Austin)1, 39–45 (2007) Article Google Scholar
Nishida, M. & MacKinnon, R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell111, 957–965 (2002) ArticleCASPubMed Google Scholar
Inada, H., Procko, E., Sotomayor, M. & Gaudet, R. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry51, 6195–6206 (2012) ArticleCASPubMed Google Scholar
Booth, D. S., Avila-Sakar, A. & Cheng, Y. Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. J. Vis. Exp.58, 3227 (2011) Google Scholar
Dukkipati, A., Park, H. H., Waghray, D., Fischer, S. & Garcia, K. C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif.62, 160–170 (2008) ArticleCASPubMedPubMed Central Google Scholar
Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible _N_-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA99, 13419–13424 (2002) ArticleADSCASPubMedPubMed Central Google Scholar
Althoff, T., Mills, D. J., Popot, J. L. & Kuhlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1 . EMBO J.30, 4652–4664 (2011) ArticleCASPubMedPubMed Central Google Scholar
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol.142, 334–347 (2003) ArticlePubMed Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996) ArticleCASPubMed Google Scholar
Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol.157, 117–125 (2007) ArticleCASPubMed Google Scholar
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004) ArticleCASPubMed Google Scholar
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph.14, 354–360 (1996) ArticleCASPubMed Google Scholar