Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol.2, 21–32 (2001). ArticleCAS Google Scholar
Li, X. et al. Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J. Biol. Chem.279, 47201–47211 (2004). CASPubMed Google Scholar
Hu, H. M., Chuang, C. K., Lee, M. J., Tseng, T. C. & Tang, T. K. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DNA Cell Biol.19, 679–688 (2000). CASPubMed Google Scholar
Bischoff, J. R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J.17, 3052–3065 (1998). Demonstrates thatAurora Ais overexpressed in more than 50% of primary colorectal cancers, and that overexpression ofAurora Atransforms rodent fibroblasts. CASPubMedPubMed Central Google Scholar
Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet.20, 189–193 (1998). CASPubMed Google Scholar
Tanner, M. M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res.6, 1833–1839 (2000). CASPubMed Google Scholar
Watanabe, T. et al. Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers. Jpn J. Cancer Res.93, 1114–1122 (2002). CASPubMedPubMed Central Google Scholar
Rojanala, S. et al. The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol. Cancer Ther.3, 451–457 (2004). CASPubMed Google Scholar
Tanaka, T. et al. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res.59, 2041–2044 (1999). CASPubMed Google Scholar
Takahashi, T. et al. Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J. Cancer Res.91, 1007–1014 (2000). CASPubMedPubMed Central Google Scholar
Gritsko, T. M. et al. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin. Cancer Res.9, 1420–1426 (2003). CASPubMed Google Scholar
Li, D. et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin. Cancer Res.9, 991–997 (2003). CASPubMed Google Scholar
Katayama, H. et al. Mitotic kinase expression and colorectal cancer progression. J. Natl Cancer Inst.91, 1160–1162 (1999). CASPubMed Google Scholar
Tatsuka, M. et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res.58, 4811–4816 (1998). CASPubMed Google Scholar
Ota, T. et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res.62, 5168–5177 (2002). CASPubMed Google Scholar
Kimura, M., Matsuda, Y., Yoshioka, T. & Okano, Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem.274, 7334–7340 (1999). CASPubMed Google Scholar
Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol.155, 1109–1116 (2001). CASPubMedPubMed Central Google Scholar
Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol.156, 437–451 (2002). CASPubMedPubMed Central Google Scholar
Berdnik, D. & Knoblich, J. A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol.12, 640–647 (2002). CASPubMed Google Scholar
Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell114, 585–598 (2003). CASPubMed Google Scholar
Bellanger, J. M. & Gonczy, P. TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr. Biol.13, 1488–1498 (2003). CASPubMed Google Scholar
Conte, N. et al. TACC1–chTOG–Aurora A protein complex in breast cancer. Oncogene22, 8102–8116 (2003). CASPubMed Google Scholar
Marumoto, T. et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem.278, 51786–51795 (2003). References 20 and 23 describe the subcellular localization of Aurora-A during the cell cycle and show that Aurora-A activity is required for execution of various mitotic events, such as mitotic entry, centrosome maturation, centrosome separation, chromosome alignment and cytokinesis. CASPubMed Google Scholar
Giet, R., Uzbekov, R., Cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem.274, 15005–15013 (1999). CASPubMed Google Scholar
Dutertre, S. et al. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J. Cell Sci.117, 2523–2531 (2004). CASPubMed Google Scholar
Marie, H. et al. The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with α-catenin. J. Biol. Chem.278, 1220–1228 (2003). CASPubMed Google Scholar
Roghi, C. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci.111, 557–572 (1998). CASPubMed Google Scholar
Tsai, M. Y. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biol.5, 242–248 (2003). CASPubMed Google Scholar
Kalab, P., Pu, R. T. & Dasso, M. The ran GTPase regulates mitotic spindle assembly. Curr. Biol.9, 481–484 (1999). CASPubMed Google Scholar
Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature400, 178–181 (1999). CASPubMed Google Scholar
Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol.143, 673–685 (1998). CASPubMedPubMed Central Google Scholar
Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science294, 543–547 (2001). CASPubMed Google Scholar
Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel xenopus MAP involved in spindle pole organization. J. Cell Biol.149, 1405–1418 (2000). CASPubMedPubMed Central Google Scholar
Garrett, S., Auer, K., Compton, D. A. & Kapoor, T. M. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr. Biol.12, 2055–2059 (2002). CASPubMed Google Scholar
Kufer, T. A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol.158, 617–623 (2002). CASPubMedPubMed Central Google Scholar
Eyers, P. A., Erikson, E., Chen, L. G. & Maller, J. L. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol.13, 691–697 (2003). References 35 and 36 show that TPX2 interacts with and is phosphorylated by Aurora-A, and acts as an activator of Aurora-A. CASPubMed Google Scholar
Giet, R. & Prigent, C. The Xenopus laevis aurora/Ip11p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp. Cell Res.258, 145–151 (2000). CASPubMed Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol.161, 267–280 (2003). CASPubMedPubMed Central Google Scholar
Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol.161, 281–294 (2003). CASPubMedPubMed Central Google Scholar
Andrews, P. D., Knatko, E., Moore, W. J. & Swedlow, J. R. Mitotic mechanics: the auroras come into view. Curr. Opin. Cell Biol.15, 672–683 (2003). CASPubMed Google Scholar
Kunitoku, N. et al. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell5, 853–864 (2003). CASPubMed Google Scholar
Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell103, 263–271 (2000). CASPubMed Google Scholar
Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol.155, 1147–1157 (2001). CASPubMedPubMed Central Google Scholar
Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J.21, 483–492 (2002). CASPubMedPubMed Central Google Scholar
Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell3, 51–62 (2003). Reports that overexpression of Aurora-A disrupts the spindle checkpoint, resulting in resistance to apoptosis induced by paclitaxel in a human cancer cell line. CASPubMed Google Scholar
Zhang, D. et al. Cre–loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene23, 8720–8730 (2004). CASPubMed Google Scholar
Honda, K. et al. Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene19, 2812–2819 (2000). CASPubMed Google Scholar
Castro, A. et al. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep.3, 1209–1214 (2002). CASPubMedPubMed Central Google Scholar
Jeng, Y. M., Peng, S. Y., Lin, C. Y. & Hsu, H. C. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin. Cancer Res.10, 2065–2071 (2004). CASPubMed Google Scholar
Sakakura, C. et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br. J. Cancer84, 824–831 (2001). CASPubMedPubMed Central Google Scholar
Goepfert, T. M. et al. Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res.62, 4115–4122 (2002). CASPubMed Google Scholar
Miyoshi, Y., Iwao, K., Egawa, C. & Noguchi, S. Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int. J. Cancer92, 370–373 (2001). CASPubMed Google Scholar
Marumoto, T. et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells7, 1173–1182 (2002). CASPubMed Google Scholar
Jiang, Y., Zhang, Y., Lees, E. & Seghezzi, W. AuroraA overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer. Oncogene22, 8293–8301 (2003). CASPubMed Google Scholar
Shackney, S. E. et al. Model for the genetic evolution of human solid tumors. Cancer Res.49, 3344–3354 (1989). CASPubMed Google Scholar
Minn, A. J., Boise, L. H. & Thompson, C. B. Expression of Bcl-XL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev.10, 2621–2631 (1996). CASPubMed Google Scholar
Lanni, J. S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol.18, 1055–1064 (1998). CASPubMedPubMed Central Google Scholar
Rieder, C. L. & Maiato, H. Stuck in division or passing through; what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell7, 637–651 (2004). CASPubMed Google Scholar
Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell12, 1315–1328 (2001). CASPubMedPubMed Central Google Scholar
Margolis, R. L., Lohez, O. D. & Andreassen, P. R. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J. Cell Biochem.88, 673–683 (2003). CASPubMed Google Scholar
Di Leonardo, A. et al. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res.57, 1013–1019 (1997). CASPubMed Google Scholar
Khan, S. H. & Wahl, G. M. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res.58, 396–401 (1998). CASPubMed Google Scholar
Casenghi, M. et al. p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells. Exp. Cell Res.250, 339–350 (1999). CASPubMed Google Scholar
Stewart, Z. A., Leach, S. D. & Pietenpol, J. A. p21Waf1/Cip1 inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol. Cell. Biol.19, 205–215 (1999). CASPubMedPubMed Central Google Scholar
Vogel, C., Kienitz, A., Hofmann, I., Muller, R. & Bastians, H. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene23, 6845–6853 (2004). CASPubMed Google Scholar
Chen, S. S., Chang, P. C., Cheng, Y. W., Tang, F. M. & Lin, Y. S. Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J.21, 4491–4499 (2002). CASPubMedPubMed Central Google Scholar
Katayama, H. et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nature Genet.36, 55–62 (2004). CASPubMed Google Scholar
Liu, Q. et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine-215. J. Biol. Chem. 6 Oct 2004 (doi:10.1074/jbc.M406802200).
Ewart-Toland, A. et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nature Genet.34, 403–412 (2003). CASPubMed Google Scholar
DiCioccio, R. A. et al. STK15 polymorphisms and association with risk of invasive ovarian cancer. Cancer Epidemiol. Biomarkers Prev.13, 1589–1594 (2004). CASPubMed Google Scholar
Egan, K. M. et al. STK15 polymorphism and breast cancer risk in a population-based study. Carcinogenesis25, 2149–2153 (2004). CASPubMed Google Scholar
Harrington, E. A. et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Med.10, 262–267 (2004). Describes a small-molecule inhibitor of Aurora kinases, VX-680, that blocks cell-cycle progression and induces apoptosis in various human tumour cell types, bothin vitroandin vivo. CASPubMed Google Scholar
Dutertre, S. & Prigent, C. Aurora-A overexpression leads to override of the microtubule-kinetochore attachment checkpoint. Mol. Interv.3, 127–130 (2003). CASPubMed Google Scholar
Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med.10, 789–799 (2004). CASPubMed Google Scholar
Yang, H. et al. Aurora-A kinase regulates telomerase activity through c-Myc in human ovarian and breast epithelial cells. Cancer Res.64, 463–467 (2004). CASPubMed Google Scholar
Kimura, M. et al. Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J. Biol. Chem.272, 13766–13771 (1997). CASPubMed Google Scholar
Bischoff, J. R. & Plowman, G. D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol.9, 454–459 (1999). CASPubMed Google Scholar
Glover, D. M., Leibowitz, M. H., McLean, D. A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell81, 95–105 (1995). CASPubMed Google Scholar
Kim, J. H., Kang, J. S. & Chan, C. S. Sli15 associates with the ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol.145, 1381–1394 (1999). CASPubMedPubMed Central Google Scholar
Adams, R. R. et al. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol.10, 1075–1078 (2000). CASPubMed Google Scholar
Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol.10, 1172–1181 (2000). CASPubMed Google Scholar
Terada, Y. et al. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J.17, 667–676 (1998). CASPubMedPubMed Central Google Scholar
Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–682 (2001). CASPubMedPubMed Central Google Scholar
Severson, A. F., Hamill, D. R., Carter, J. C., Schumacher, J. & Bowerman, B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr. Biol.10, 1162–1171 (2000). CASPubMed Google Scholar
Murata-Hori, M. et al. Myosin II regulatory light chain as a novel substrate for AIM-1, an aurora/Ipl1p-related kinase from rat. J. Biochem. (Tokyo)128, 903–907 (2000). CAS Google Scholar
Goto, H. et al. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J. Biol. Chem.278, 8526–8530 (2003). CASPubMed Google Scholar
Kawajiri, A. et al. Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol. Biol. Cell14, 1489–1500 (2003). CASPubMedPubMed Central Google Scholar
Minoshima, Y. et al. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell4, 549–560 (2003). CASPubMed Google Scholar
Kawasaki, A. et al. Downregulation of an AIM-1 kinase couples with megakaryocytic polyploidization of human hematopoietic cells. J. Cell Biol.152, 275–287 (2001). CASPubMedPubMed Central Google Scholar
Geddis, A. E. & Kaushansky, K. Megakaryocytes express functional Aurora-B kinase in endomitosis. Blood104, 1017–1024 (2004). CASPubMed Google Scholar
Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature404, 302–307 (2000). CASPubMed Google Scholar
Castro, A., Mandart, E., Lorca, T. & Galas, S. Involvement of Aurora A kinase during meiosis I-II transition in Xenopus oocytes. J. Biol. Chem.278, 2236–2241 (2003). CASPubMed Google Scholar
Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem.276, 46219–46224 (2001). CASPubMed Google Scholar
Bishop, J. D. & Schumacher, J. M. Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B Kinase stimulates Aurora B kinase activity. J. Biol. Chem.277, 27577–27580 (2002). CASPubMed Google Scholar
Rogers, E., Bishop, J. D., Waddle, J. A., Schumacher, J. M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol.157, 219–129 (2002). CASPubMedPubMed Central Google Scholar
Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol.14, 273–286 (2004). CASPubMed Google Scholar
Gigoux, V., L'Hoste, S., Raynaud, F., Camonis, J. & Garbay, C. Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins. J. Biol. Chem.277, 23742–23746 (2002). CASPubMed Google Scholar
Du, J. & Hannon, G. J. The centrosomal kinase Aurora-A/STK15 interacts with a putative tumor suppressor NM23-H1. Nucleic Acids Res.30, 5465–5475 (2002). CASPubMedPubMed Central Google Scholar
Littlepage, L. E. & Ruderman, J. V. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev.16, 2274–2285 (2002). CASPubMedPubMed Central Google Scholar