Post-prenylation-processing enzymes as new targets in oncogenesis (original) (raw)
Glomset, J. A. & Farnsworth, C. C. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu. Rev. Cell Biol.10, 181–205 (1994). CASPubMed Google Scholar
Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem.65, 241–269 (1996). CASPubMed Google Scholar
Casey, P. J. & Seabra, M. C. Protein prenyltransferases. J. Biol. Chem.271, 5289–5292 (1996). CASPubMed Google Scholar
Ashby, M. N. CaaX converting enzymes. Curr. Opin. Lipidol.9, 99–102 (1998). CASPubMed Google Scholar
Young, S. G., Ambroziack, P., Kim, E. & Clarke, S. in The Enzymes 3rd edn Vol. 21 (eds Tamanoi, F. and Sigman, D. G.) 156–213 (Academic, San Diego, 2001). Google Scholar
Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer3, 459–465 (2003). CAS Google Scholar
Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature400, 464–468 (1999). CASPubMed Google Scholar
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell103, 211–225 (2000). CASPubMed Google Scholar
Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer4, 361–370 (2004). CAS Google Scholar
Jaffe, A. B. & Hall, A. Rho GTPases in transformation and metastasis. Adv. Cancer Res.84, 57–80 (2002). CASPubMed Google Scholar
Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer2, 133–142 (2002). Google Scholar
Ishida, D. et al. Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell4, 55–65 (2003). CASPubMed Google Scholar
Daaka, Y. G proteins in cancer: the prostate cancer paradigm. Sci. STKE216, re2 (2004). Google Scholar
Schwindinger, W. F. & Robishaw, J. D. Heterotrimeric G-protein βγ-dimers in growth and differentiation. Oncogene20, 1653–1660 (2001). CASPubMed Google Scholar
Heasley, L. E. Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene20, 1563–1569 (2001). CASPubMed Google Scholar
Fromm, C., Coso, O. A., Montaner, S., Xu, N. & Gutkind, J. S. The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proc. Natl Acad. Sci. USA94, 10098–10103 (1997). CASPubMedPubMed Central Google Scholar
Cates, C. A. et al. Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett.110, 49–55 (1996). CASPubMed Google Scholar
Collins, S. P., Reoma, J. L., Gamm, D. M. & Uhler, M. D. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem. J.345, 673–680 (2000). CASPubMedPubMed Central Google Scholar
Hutchison, C. J. Lamins: building blocks or regulators of gene expression? Nature Rev. Mol. Cell Biol.3, 848–858 (2002). CAS Google Scholar
Ashar, H. R. et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J. Biol. Chem.275, 30451–30457 (2000). CASPubMed Google Scholar
Kloog, Y. & Cox, A. D. Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Semin. Cancer Biol.14, 253–261 (2004). CASPubMed Google Scholar
Kato, K. et al. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl Acad. Sci. USA89, 6403–6407 (1992). CASPubMedPubMed Central Google Scholar
Hori, Y. et al. Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene6, 515–522 (1991). CASPubMed Google Scholar
Allal, C. et al. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J. Biol. Chem.275, 31001–31008 (2000). CASPubMed Google Scholar
Fukada, Y. et al. Farnesylated γ-subunit of photoreceptor G protein indispensable for GTP-binding. Nature346, 658–660 (1990). CASPubMed Google Scholar
Gibbs, J. B., Oliff, A. & Kohl, N. E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell77, 175–178 (1994). CASPubMed Google Scholar
Mazieres, J., Pradines, A. & Favre, G. Perspectives on farnesyl transferase inhibitors in cancer therapy. Cancer Lett.206, 159–167 (2004). CASPubMed Google Scholar
Kohl, N. E. et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med.1, 792–797 (1995). CASPubMed Google Scholar
Doll, R. J., Kirschmeier, P. & Bishop, W. R. Farnesyltransferase inhibitors as anticancer agents: critical crossroads. Curr. Opin. Drug Discov. Devel.7, 478–486 (2004). CASPubMed Google Scholar
Gotlib, J. Farnesyltransferase inhibitor therapy in acute myelogenous leukemia. Curr. Hematol. Rep.4, 77–84 (2005). CASPubMed Google Scholar
Cox, A. D. & Der, C. J. Farnesyltransferase inhibitors: promises and realities. Curr. Opin. Pharmacol.2, 388–393 (2002). CASPubMed Google Scholar
James, G. L., Goldstein, J. L. & Brown, M. S. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J. Biol. Chem.270, 6221–6226 (1995). CASPubMed Google Scholar
Whyte, D. B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem.272, 14459–14464 (1997). CASPubMed Google Scholar
Sebti, S. M. & Der, C. J. Searching for the elusive targets of farnesyltransferase inhibitors. Nature Rev. Cancer3, 945–951 (2003). CAS Google Scholar
Kim, E. et al. Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J. Biol. Chem.274, 8383–8390 (1999). CASPubMed Google Scholar
Bergo, M. O. et al. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J. Biol. Chem.275, 17605–17610 (2000). CASPubMed Google Scholar
Clarke, S. & Tamanoi, F. Fighting cancer by disrupting C-terminal methylation of signaling proteins. J. Clin. Invest.113, 513–515 (2004). CASPubMedPubMed Central Google Scholar
Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science275, 1796–1800 (1997). CASPubMed Google Scholar
Otto, J. C., Kim, E., Young, S. G. & Casey, P. J. Cloning and characterization of a mammalian prenyl protein-specific protease. J. Biol. Chem.274, 8379–8382 (1999). CASPubMed Google Scholar
Schmidt, W. K., Tam, A., Fujimura-Kamada, K. & Michaelis, S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc. Natl Acad. Sci. USA95, 11175–11180 (1998). CASPubMedPubMed Central Google Scholar
Jang, G. F. & Gelb, M. H. Substrate specificity of mammalian prenyl protein-specific endoprotease activity. Biochemistry37, 4473–4481 (1998). CASPubMed Google Scholar
Chen, Y., Ma, Y. T. & Rando, R. R. Solubilization, partial purification, and affinity labeling of the membrane-bound isoprenylated protein endoprotease. Biochemistry35, 3227–3237 (1996). CASPubMed Google Scholar
Pei, J. & Grishin, N. V. Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem. Sci.26, 275–277 (2001). CASPubMed Google Scholar
Trueblood, C. E. et al. The CaaX proteases, Afc1p and Rce1p, have overlapping but distinct substrate specificities. Mol. Cell. Biol.20, 4381–4392 (2000). CASPubMedPubMed Central Google Scholar
Bergo, M. O. et al. On the physiological importance of endoproteolysis of CAAX proteins: heart-specific RCE1 knockout mice develop a lethal cardiomyopathy. J. Biol. Chem.279, 4729–4736 (2004). CASPubMed Google Scholar
Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem.273, 15030–15034 (1998). CASPubMed Google Scholar
Romano, J. D., Schmidt, W. K. & Michaelis, S. The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum membrane. Mol. Biol. Cell9, 2231–2247 (1998). CASPubMedPubMed Central Google Scholar
Marr, R. S., Blair, L. C. & Thorner, J. Saccharomyces cerevisiae STE14 gene is required for COOH-terminal methylation of a-factor mating pheromone. J. Biol. Chem.265, 20057–20060 (1990). CASPubMed Google Scholar
Hrycyna, C. A., Sapperstein, S. K., Clarke, S. & Michaelis, S. The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J.10, 1699–1709 (1991). CASPubMedPubMed Central Google Scholar
Kagan, R. M. & Clarke, S. Widespread occurrence of three sequence motifs in diverse _S_-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. Biophys.310, 417–427 (1994). CASPubMed Google Scholar
Tan, E. W., Perez-Sala, D., Canada, F. J. & Rando, R. R. Identifying the recognition unit for G protein methylation. J. Biol. Chem.266, 10719–10722 (1991). CASPubMed Google Scholar
Lin, X. et al. Prenylcysteine carboxylmethyltransferase is essential for the earliest stages of liver development in mice. Gastroenterology123, 345–351 (2002). CASPubMed Google Scholar
Bergo, M. O. et al. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J. Biol. Chem.276, 5841–5845 (2001). CASPubMed Google Scholar
Smeland, T. E., Seabra, M. C., Goldstein, J. L. & Brown, M. S. Geranylgeranylated Rab proteins terminating in Cys-Ala-Cys, but not Cys-Cys, are carboxyl-methylated by bovine brain membranes in vitro. Proc. Natl Acad. Sci. USA91, 10712–10716 (1994). CASPubMedPubMed Central Google Scholar
Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev.81, 153–208 (2001). CASPubMed Google Scholar
Silvius, J. R. & l'Heureux, F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry33, 3014–3022 (1994). CASPubMed Google Scholar
Chen, Z., Otto, J. C., Bergo, M. O., Young, S. G. & Casey, P. J. The C-terminal polylysine region and methylation of K-Ras are critical for the interaction between K-Ras and microtubules. J. Biol. Chem.275, 41251–41257 (2000). CASPubMed Google Scholar
Michaelson, D., Ahearn, I., Bergo, M., Young, S. & Philips, M. Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi. Mol. Biol. Cell13, 3294–3302 (2002). CASPubMedPubMed Central Google Scholar
Michaelson, D. et al. Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol. Biol. Cell (in the press).
Hrycyna, C. A. & Clarke, S. Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae. Mol. Cell. Biol.10, 5071–5076 (1990). CASPubMedPubMed Central Google Scholar
Sapperstein, S., Berkower, C. & Michaelis, S. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol. Cell. Biol.14, 1438–1449 (1994). CASPubMedPubMed Central Google Scholar
Parish, C. A., Smrcka, A. V. & Rando, R. R. Functional significance of βγ subunit carboxymethylation for the activation of phospholipase C and phosphoinositide 3-kinase. Biochemistry34, 7722–7727 (1995). CASPubMed Google Scholar
Fukada, Y. et al. Effects of carboxyl methylation of photoreceptor G protein γ subunit in visual transduction. J. Biol. Chem.269, 5163–5170 (1994). CASPubMed Google Scholar
Maske, C. P. et al. A carboxyl-terminal interaction of lamin B1 is dependent on the CAAX endoprotease Rce1 and carboxymethylation. J. Cell Biol.162, 1223–1232 (2003). CASPubMedPubMed Central Google Scholar
Backlund, P. S. Jr. Post-translational processing of RhoA. Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of RhoA. J. Biol Chem.272, 33175–33180 (1997). CASPubMed Google Scholar
Bergo, M. O. et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest.113, 539–550 (2004). CASPubMedPubMed Central Google Scholar
Philips, M. R. et al. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science259, 977–980 (1993). CASPubMed Google Scholar
Perez, E., West, A. H., Stock, A. M. & Djordjevic, S. Discrimination between different methylation states of chemotaxis receptor Tar by receptor methyltransferase CheR. Biochemistry43, 953–961 (2004). CASPubMed Google Scholar
Kort, E. N., Goy, M. F., Larsen, S. H. & Adler, J. Methylation of a membrane protein involved in bacterial chemotaxis. Proc. Natl Acad. Sci. USA72, 3939–3943 (1975). CASPubMedPubMed Central Google Scholar
Choi, Y. J. et al. Assays of human postprenylation processing enzymes. Methods Enzymol.332, 103–114 (2001). CASPubMed Google Scholar
Tan, E. W. & Rando, R. R. Identification of an isoprenylated cysteine methyl ester hydrolase activity in bovine rod outer segment membranes. Biochemistry31, 5572–5578 (1992). CASPubMed Google Scholar
Dunten, R. L., Wait, S. J. & Backlund, P. S. Jr. Fractionation and characterization of protein C-terminal prenyl-cysteine methylesterase activities from rabbit brain. Biochem. Biophys. Res. Commun.208, 174–182 (1995). CASPubMed Google Scholar
Bergo, M. O. et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol. Cell. Biol.22, 171–181 (2002). CASPubMedPubMed Central Google Scholar
Aiyagari, A. L., Taylor, B. R., Aurora, V., Young, S. G. & Shannon, K. M. Hematologic effects of inactivating the Ras processing enzyme Rce1. Blood101, 2250–2252 (2003). CASPubMed Google Scholar
Schlitzer, M., Winter-Vann, A. & Casey, P. J. Non-peptidic, non-prenylic inhibitors of the prenyl protein-specific protease Rce1. Bioorg. Med. Chem. Lett.11, 425–427 (2001). CASPubMed Google Scholar
Ma, Y. T., Gilbert, B. A. & Rando, R. R. Inhibitors of the isoprenylated protein endoprotease. Biochemistry32, 2386–2393 (1993). CASPubMed Google Scholar
Chen, Y. Selective inhibition of Ras-transformed cell growth by a novel fatty acid-based chloromethyl ketone designed to target Ras endoprotease. Ann. NY Acad. Sci.886, 103–108 (1999). CASPubMed Google Scholar
Shi, Y. Q. & Rando, R. R. Kinetic mechanism of isoprenylated protein methyltransferase. J. Biol. Chem.267, 9547–9551 (1992). CASPubMed Google Scholar
Winter-Vann, A. M. et al. Targeting Ras signaling through inhibition of carboxyl methylation: An unexpected property of methotrexate. Proc. Natl Acad. Sci. USA100, 6529–6534 (2003). CASPubMedPubMed Central Google Scholar
Wang, H. et al. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J. Biol. Chem.272, 25380–25385 (1997). CASPubMed Google Scholar
Kramer, K. et al. Isoprenylcysteine carboxyl methyltransferase activity modulates endothelial cell apoptosis. Mol. Biol. Cell14, 848–857 (2003). CASPubMedPubMed Central Google Scholar
Lu, Q. et al. Isoprenylcysteine carboxyl methyltransferase modulates endothelial monolayer permeability. Involvement of RhoA carboxyl methylation. Circ. Res.94, 306–315 (2004). CASPubMed Google Scholar
Hoffman, D. R., Cornatzer, W. E. & Duerre, J. A. Relationship between tissue levels of _S_-adenosylmethionine, _S_-adenylhomocysteine, and transmethylation reactions. Can. J. Biochem.57, 56–65 (1979). CASPubMed Google Scholar
Chiang, P. K. et al. _S_-adenosylmethionine and methylation. FASEB J.10, 471–480 (1996). CASPubMed Google Scholar
Perez-Sala, D., Gilbert, B. A., Tan, E. W. & Rando, R. R. Prenylated protein methyltransferases do not distinguish between farnesylated and geranylgeranylated substrates. Biochem. J.284, 835–840 (1992). CASPubMedPubMed Central Google Scholar
Kowluru, A. et al. Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure β cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion. J. Clin. Invest.98, 540–555 (1996). CASPubMedPubMed Central Google Scholar
Chiu, V. K. et al. Carboxyl methylation of ras regulates membrane targeting and effector engagment. J. Biol. Chem.279, 7346–7352 (2003). PubMed Google Scholar
Roullet, J. B. et al. Farnesyl analogues inhibit vasoconstriction in animal and human arteries. J. Clin. Invest.97, 2384–2390 (1996). CASPubMedPubMed Central Google Scholar
Scheer, A. & Gierschik, P. Farnesylcysteine analogues inhibit chemotactic peptide receptor-mediated G-protein activation in human HL-60 granulocyte membranes. FEBS Lett.319, 110–114 (1993). CASPubMed Google Scholar
Ma, Y. T. et al. Mechanistic studies on human platelet isoprenylated protein methyltransferase: farnesylcysteine analogs block platelet aggregation without inhibiting the methyltransferase. Biochemistry33, 5414–5420 (1994). CASPubMed Google Scholar
Ding, J. et al. Farnesyl-l-cysteine analogs can inhibit or initiate superoxide release by human neutrophils. J. Biol. Chem.269, 16837–16844 (1994). CASPubMed Google Scholar
Philips, M. R. Methotrexate and Ras methylation: a new trick for an old drug? Sci. STKE225, pe13 (2004). Google Scholar
Chen, Y. Inhibition of K-ras-transformed rodent and human cancer cell growth via induction of apoptosis by irreversible inhibitors of Ras endoprotease. Cancer Lett.131, 191–200 (1998). CASPubMed Google Scholar
Backlund, P. S. Post-translational processing of RhoA. Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of Rhoa. J. Biol. Chem.272, 33175–33180 (1997). CASPubMed Google Scholar
Garnett, M. J. & Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell6, 313–319 (2004). CASPubMed Google Scholar
Rowinsky, E. K. Signal events: cell signal transduction and its inhibition in cancer. Oncologist8 (Suppl. 3), 5–17 (2003). CASPubMed Google Scholar
Reid, T. S., Terry, K. L., Casey, P. J. & Beese, L. S. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J. Mol. Biol.343, 417–433 (2004). CASPubMed Google Scholar
McFarlane, S. I., Muniyappa, R., Francisco, R. & Sowers, J. R. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J. Clin. Endocrinol. Metab.87, 1451–1458 (2002). CASPubMed Google Scholar
Auer, J., Berent, R., Weber, T. & Eber, B. Clinical significance of pleiotropic effects of statins: lipid reduction and beyond. Curr. Med. Chem.9, 1831–1850 (2002). CASPubMed Google Scholar
Chan, K. K., Oza, A. M. & Siu, L. L. The statins as anticancer agents. Clin. Cancer Res.9, 10–19 (2003). CASPubMed Google Scholar
Soltis, D. A. et al. Expression, purification, and characterization of the human squalene synthase: use of yeast and baculoviral systems. Arch. Biochem. Biophys.316, 713–723 (1995). CASPubMed Google Scholar
Sagami, H., Morita, Y. & Ogura, K. Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain. J. Biol. Chem.269, 20561–20566 (1994). CASPubMed Google Scholar
Furfine, E. S., Leban, J. J., Landavazo, A., Moomaw, J. F. & Casey, P. J. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry34, 6857–6862 (1995). CASPubMed Google Scholar
Kusama, T. et al. Inhibition of epidermal growth factor-induced RhoA translocation and invasion of human pancreatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors. Cancer Res.61, 4885–4891 (2001). CASPubMed Google Scholar
Thorpe, J. L., Doitsidou, M., Ho, S. Y., Raz, E. & Farber, S. A. Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. Dev. Cell6, 295–302 (2004). CASPubMed Google Scholar
Ye, J. et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl Acad. Sci. USA100, 15865–15870 (2003). CASPubMedPubMed Central Google Scholar
Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol.4, 343–350 (2002). CASPubMed Google Scholar
Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol.152, 111–126 (2001). CASPubMedPubMed Central Google Scholar
Adamson, P., Paterson, H. F. & Hall, A. Intracellular localization of the P21rho proteins. J. Cell Biol.119, 617–627 (1992). CASPubMed Google Scholar
Kwiatkowski, D. J. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther.2, 471–476 (2003). CASPubMed Google Scholar
Bardelli, A. et al. PRL-3 expression in metastatic cancers. Clin. Cancer Res.9, 5607–5615 (2003). CASPubMed Google Scholar