HSP90 and the chaperoning of cancer (original) (raw)
Wegele, H., Muller, L. & Buchner, J. Hsp70 and Hsp90 — a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol.151, 1–44 (2004). ArticleCASPubMed Google Scholar
Takayama, S., Reed, J. C. & Homma, S. Heat-shock proteins as regulators of apoptosis. Oncogene22, 9041–9047 (2003). ArticleCASPubMed Google Scholar
Dymock, B. W., Drysdale, M. J., McDonald, E. & Workman, P. Inhibitors of HSP90 and other chaperones for the treatment of cancer. Expert. Opin. Ther. Patents14, 837–847 (2004). ArticleCAS Google Scholar
Morimoto, R. I. & Santoro, M. G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotechnol.16, 833–838 (1998). ArticleCAS Google Scholar
Leppa, S. & Sistonen, L. Heat shock response — pathophysiological implications. Ann. Med.29, 73–78 (1997). ArticleCASPubMed Google Scholar
Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst.92, 1564–1572 (2000). ArticleCASPubMed Google Scholar
Smith, D. F., Whitesell, L. & Katsanis, E. Molecular chaperones: biology and prospects for pharmacological intervention. Pharm. Rev.50, 493–513 (1998). CASPubMed Google Scholar
Csermely, P., Schnaider, T., Soti, C., Prohaskka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther.79, 129–168 (1998). ArticleCASPubMed Google Scholar
Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature348, 166–168 (1990). ArticleCASPubMed Google Scholar
Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science296, 2232–2235 (2002). Surprising evidence that chaperones not only have a role in regulating the activation of signal transduction pathways, but can also modulate cellular activities by assisting in the termination of transcriptional responses. ArticleCASPubMed Google Scholar
Zeng, Y., Feng, H., Graner, M. W. & Katsanis, E. Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood101, 4485–4491 (2003). ArticleCASPubMed Google Scholar
Parmiani, G. et al. Heat shock proteins and their use as anticancer vaccines. Clin. Cancer Res.10, 8142–8146 (2004). ArticleCASPubMed Google Scholar
Smith, D. F. et al. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol.Cell. Biol.15, 6804–6812 (1995). Describes the cyclical chaperone interactions that were shown in rabbit reticulocyte lysate to regulate the high affinity binding of hormone by steroid receptors and how this cycling is disrupted by geldanamycin. ArticleCASPubMedPubMed Central Google Scholar
Nathan, D. E., Vos, M. H. & Lindquist, S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl Acad. Sci. USA94, 12949–12956 (1997). ArticleCASPubMedPubMed Central Google Scholar
Pratt, W. B. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc. Soc. Exp. Biol. Med.217, 420–431 (1998). ArticleCASPubMed Google Scholar
Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell120, 715–727 (2005). ArticleCASPubMed Google Scholar
Morimoto, R. I. Dynamic remodeling of transcription complexes by molecular chaperones. Cell110, 281–284 (2002). ArticleCASPubMed Google Scholar
Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet.33, 70–74 (2003). ArticleCASPubMed Google Scholar
Sangster, T. A., Queitsch, C. & Lindquist, S. Hsp90 and chromatin: where is the link? Cell Cycle2, 166–168 (2003). ArticleCASPubMed Google Scholar
Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature396, 336–342 (1998). Groundbreaking report that the chaperone function of HSP90 can buffer genetic variation inD. melanogaster, allowing it to accumulate silently until it is released in the face of environmental stress to be acted on by natural selection. ArticleCASPubMed Google Scholar
Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature417, 618–624 (2002). ArticleCASPubMed Google Scholar
Ruden, D. M., Garfinkel, M. D., Sollars, V. E. & Lu, X. Waddington's widget: Hsp90 and the inheritance of acquired characters. Semin. Cell Dev. Biol.14, 301–310 (2003). ArticleCASPubMed Google Scholar
Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays26, 348–362 (2004). ArticleCASPubMed Google Scholar
Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet.4, 263–274 (2003). ArticleCASPubMed Google Scholar
Bagatell, R. & Whitesell, L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther.3, 1021–1030 (2004). ArticleCASPubMed Google Scholar
Gatenby, R. A. & Vincent, T. L. An evolutionary model of carcinogenesis. Cancer Res.63, 6212–6220 (2003). CASPubMed Google Scholar
Kimura, E. et al. Correlation of the survival of ovarian cancer patients with mRNA expression of the 60kDa heat shock protein Hsp60. J. Clin. Oncol.11, 891–898 (1993). ArticleCASPubMed Google Scholar
Ciocca, D. R. et al. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J. Natl Cancer Inst.85, 570–574 (1993). ArticleCASPubMed Google Scholar
Conroy, S. E., Sasieni, P. D., Fentiman, I. & Latchman, D. S. Autoantibodies to the 90kDa heat shock protein and poor survival in breast cancer patients. Eur. J. Cancer34, 942–943 (1998). CASPubMed Google Scholar
Ralhan, R. & Kaur, J. Differential expression of Mr 70, 000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin. Cancer Res.1, 1217–1222 (1995). CASPubMed Google Scholar
Kaur, J. & Ralhan, R. Differential expression of 70-kDa heat shock-protein in human oral tumorigenesis. Int. J. Cancer63, 774–779 (1995). ArticleCASPubMed Google Scholar
Santarosa, M., Favaro, D., Quaia, M. & Galligioni, E. Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur. J. Cancer33, 873–877 (1997). ArticleCASPubMed Google Scholar
Chant, I. D., Rose, P. E. & Morris, A. G. Analysis of heat shock protein expression in myeloid leukaemia cells by flow cytometry. Br. J. Haematol.90, 163–168 (1995). ArticleCASPubMed Google Scholar
Yufu, Y., Nishimura, J. & Nawata, H. High constitutive expression of heat shock protein 90α in human acute leukemia cells. Leuk. Res.16, 597–605 (1992). ArticleCASPubMed Google Scholar
Jameel, A. et al. Clinical and biological significance of Hsp90a in human breast cancer. Int. J. Cancer50, 409–415 (1992). ArticleCASPubMed Google Scholar
Yano, M., Naito, Z., Tanaka, S. & Asano, G. Expression and roles of heat shock proteins in human breast cancer. Jpn. J. Cancer Res.87, 908–915 (1996). ArticleCASPubMedPubMed Central Google Scholar
Nanbu, K. et al. Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect. Prev.22, 549–555 (1998). ArticleCASPubMed Google Scholar
Trieb, K. et al. Antibodies to heat shock protein 90 in osteosarcoma patients correlate with response to neoadjuvant chemotherapy. BR. J. Cancer82, 85–87 (2000). ArticleCASPubMed Google Scholar
Mosser, D. D. & Morimoto, R. I. Molecular chaperones and the stress of oncogenesis. Oncogene23, 2907–2918 (2004). ArticleCASPubMed Google Scholar
Jaattela, M. Escaping cell death: survival proteins in cancer. Exp. Cell Res.248, 30–43 (1999). ArticleCASPubMed Google Scholar
Hannun, Y. Apoptosis and the dilemma of cancer chemotherapy. Blood89, 1845–1853 (1997). CASPubMed Google Scholar
Sliutz, G. et al. Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br. J. Cancer74, 172–177 (1996). ArticleCASPubMedPubMed Central Google Scholar
Mosser, D. D. et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell. Biol.20, 7146–7159 (2000). ArticleCASPubMedPubMed Central Google Scholar
Steel, R. et al. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J. Biol. Chem.279, 51490–51499 (2004). ArticleCASPubMed Google Scholar
Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. & Massie, B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol.17, 5317–5327 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nylandsted, J. et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl Acad. Sci. USA97, 7871–7876 (2000). Demonstrates differential requirements for HSP70 in the growth and survival of breast cancer cells compared with normal cells. ArticleCASPubMedPubMed Central Google Scholar
Rohde, M. et al. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev.19, 570–582 (2005). ArticleCASPubMedPubMed Central Google Scholar
Basso, A. D. et al. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem.277, 39858–39866 (2002). ArticleCASPubMed Google Scholar
Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W. & Vandenabeele, P. Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem.278, 5622–5629 (2003). ArticleCASPubMed Google Scholar
Chen, G., Cao, P. & Goeddel, D. V. TNF-induced recruitment and activation of the IkK complex require Cdc37 and Hsp90. Mol. Cell9, 401–410 (2002). ArticleCASPubMed Google Scholar
Xu, Y., Singer, M. A. & Lindquist, S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. Sci. USA96, 109–114 (1999). ArticleCASPubMedPubMed Central Google Scholar
Oppermann, H., Levinson, W. & Bishop, J. M. A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc. Natl Acad. Sci. USA78, 1067–1071 (1981). ArticleCASPubMedPubMed Central Google Scholar
Brugge, J., Yonemoto, W. & Darrow, D. Interaction between the Rous sarcoma virus transforming protein and two cellular phosphoproteins: analysis of the turnover and distribution of this complex. Mol. Cell. Biol.3, 9–19 (1983). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y. & Lindquist, S. Heat-shock protein hsp90 governs the activity of pp60vsrc kinase. Proc. Natl Acad. Sci. USA90, 7074–7078 (1993). ArticleCASPubMedPubMed Central Google Scholar
Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E. & Neckers, L. M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA91, 8324–8328 (1994). Identification of geldanamycin as the first small-molecule inhibitor of HSP90 chaperone function. ArticleCASPubMedPubMed Central Google Scholar
Muller, L., Schaupp, A., Walerych, D., Wegele, H. & Buchner, J. Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J. Biol. Chem.279, 48846–48854 (2004). ArticlePubMedCAS Google Scholar
Walerych, D. et al. Hsp90 chaperones wild-type p53 tumor suppressor protein. J. Biol. Chem.279, 48836–48845 (2004). ArticleCASPubMed Google Scholar
Whitesell, L., Sutphin, P. D., Pulcini, E. J., Martinez, J. D. & Cook, P. H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol.18, 1517–1524 (1998). ArticleCASPubMedPubMed Central Google Scholar
Blagosklonny, M. V., Toretsky, J., Bohen, S. & Neckers, L. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl Acad. Sci. USA93, 8379–8383 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sepehrnia, B., Paz, I. B., Dasgupta, G. & Momand, J. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J. Biol. Chem.271, 15084–15090 (1996). ArticleCASPubMed Google Scholar
Sreedhar, A. S., Kalmar, E., Csermely, P. & Shen, Y. F. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett.562, 11–15 (2004). ArticlePubMedCAS Google Scholar
Eustace, B. K. et al. Functional proteomic screens reveal an essential extracellular role for hsp90 α in cancer cell invasiveness. Nature Cell Biol.6, 507–514 (2004). ArticleCASPubMed Google Scholar
Grammatikakis, N. et al. The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J. Biol. Chem.277, 8312–8320 (2002). ArticleCASPubMed Google Scholar
Pearl, L. H. & Prodromou, C. Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv. Protein Chem.59, 157–186 (2001). ArticleCASPubMed Google Scholar
Prodromou, C. & Pearl, L. H. Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets3, 301–323 (2003). ArticleCASPubMed Google Scholar
Stebbins, C. E. et al. Crystal structure of an hsp90–geldanamycin complex: targeting of a protein chaperone by an anti-tumor agent. Cell89, 239–250 (1997). ArticleCASPubMed Google Scholar
Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell90, 65–75 (1997). Identification and characterization of the binding pocket for geldanamycin on HSP90 as an atypical ATPase site. ArticleCASPubMed Google Scholar
Meyer, P. et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell11, 647–658 (2003). ArticleCASPubMed Google Scholar
Huai, Q. et al. Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding. Structure (Camb)13, 579–590 (2005). ArticleCAS Google Scholar
Harris, S. F., Shiau, A. K. & Agard, D. A. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure (Camb)12, 1087–1097 (2004). ArticleCAS Google Scholar
Dutta, R. & Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci.25, 24–28 (2000). ArticleCASPubMed Google Scholar
McLaughlin, S. H., Ventouras, L. A., Lobbezoo, B. & Jackson, S. E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol.344, 813–826 (2004). Biophysical evidence for an alternative to the 'molecular clamp' model of HSP90 chaperoning action. ArticleCASPubMed Google Scholar
Roe, S. M. et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell116, 87–98 (2004). ArticleCASPubMed Google Scholar
Pearl, L. H. Hsp90 and Cdc37 — a chaperone cancer conspiracy. Curr. Opin. Genet. Dev.15, 55–61 (2005). ArticleCASPubMed Google Scholar
Soti, C., Racz, A. & Csermely, P. A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. J. Biol. Chem.277, 7066–7075 (2002). ArticleCASPubMed Google Scholar
Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Embo J.23, 511–519 (2004). ArticleCASPubMedPubMed Central Google Scholar
Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell10, 1307–1318 (2002). ArticleCASPubMed Google Scholar
Garnier, C. et al. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem.277, 12208–12214 (2002). ArticleCASPubMed Google Scholar
Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell101, 199–210 (2000). Structural elucidation of how multichaperone complexes can be formed by adapter proteins. ArticleCASPubMed Google Scholar
Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. Embo J.18, 754–762 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. S., Marcu, M. G. & Neckers, L. Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem. Biol.11, 991–998 (2004). ArticleCASPubMed Google Scholar
Roe, S. M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem.42, 260–266 (1999). ArticleCASPubMed Google Scholar
Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA99, 12847–12852 (2002). Identification of a mechanism by which chaperone interactions regulate the cellular level of a receptor-linked tyrosine kinase. ArticleCASPubMedPubMed Central Google Scholar
Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol.15, 3917–3925 (1995). ArticleCASPubMedPubMed Central Google Scholar
Birnby, D. A. et al. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics155, 85–104 (2000). CASPubMedPubMed Central Google Scholar
Yue, L. et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics151, 1065–1079 (1999). CASPubMedPubMed Central Google Scholar
LeBlanc, R. et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res.62, 4996–5000 (2002). CASPubMed Google Scholar
Kim, J. et al. Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J. Biomol. Screen.9, 375–381 (2004). ArticleCASPubMed Google Scholar
Kamal, A., Boehm, M. F. & Burrows, F. J. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med.10, 283–290 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature425, 407–410 (2003). First evidence that HSP90 in tumour cells is found in multimolecular complexes with higher affinity for 17AAG than the largely uncomplexed HSP90 found in normal cells. This paper provides a biochemical explanation for why a useful therapeutic index might exist for HSP90 inhibitors. ArticleCASPubMed Google Scholar
Workman, P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med.10, 47–51 (2004). ArticleCASPubMed Google Scholar
Yun, B. G., Huang, W., Leach, N., Hartson, S. D. & Matts, R. L. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry43, 8217–8229 (2004). ArticleCASPubMed Google Scholar
Marcu, M. G., Schulte, T. W. & Neckers, L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J. Natl Cancer Inst.92, 242–248 (2000). ArticleCASPubMed Google Scholar
Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M. & Neckers, L. M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the C-terminus of the chaperone. J. Biol. Chem.275, 37181–37186 (2000). Biochemical evidence for a second, cryptic ATP-binding site in HSP90 that binds the antibiotic novobiocin, albeit with very low affinity. ArticleCASPubMed Google Scholar
Itoh, H. et al. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90. Biochem. J.343, 697–703 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rosenhagen, M. C. et al. The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation. Mol. Endocrinol.17, 1991–2001 (2003). ArticleCASPubMed Google Scholar
McIlwrath, A. J., Brunton, V. G. & Brown, R. Cell-cycle arrest and p53 accumulation induced by geldanamycin in human ovarian tumour cells. Cancer Chemother. Pharmacol.37, 423–428 (1996). ArticleCASPubMed Google Scholar
Nomura, M. et al. Geldanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells. J. Cell. Physiol.201, 374–384 (2004). ArticleCASPubMed Google Scholar
Srethapakdi, M., Liu, F., Tavorath, R. & Rosen, N. Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest. Cancer Res.60, 3940–3946 (2000). CASPubMed Google Scholar
Hostein, I., Robertson, D., DiStefano, F., Workman, P. & Clarke, P. A. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res.61, 4003–4009 (2001). CASPubMed Google Scholar
Bagatell, R., Beliakoff, J., David, C. L., Marron, M. T. & Whitesell, L. Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int. J. Cancer113, 179–188 (2005). ArticleCASPubMed Google Scholar
Munster, P. N., Basso, A., Solit, D., Norton, L. & Rosen, N. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res.7, 2155–2158 (2001). Clin. Cancer Res.7, 2228–2236 (2001). Evidence for the ability of HSP90 inhibitors to increase the anticancer activity of cytotoxic chemotherapeutic agents. Google Scholar
Basso, A. D., Solit, D. B., Munster, P. N. & Rosen, N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene21, 1159–1166 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maloney, A., Clarke, P. A. & Workman, P. Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: a mechanistic perspective. Curr. Cancer Drug Targets3, 331–341 (2003). ArticleCASPubMed Google Scholar
Gorre, M. E., Ellwood-Yen, K., Chiosis, G., Rosen, N. & Sawyers, C. L. BCR–ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR–ABL chaperone heat shock protein 90. Blood100, 3041–3044 (2002). Clinical BCR–ABL mutations that render the kinase resistant to the active site inhibitor imatinib (Glivec) remain HSP90-dependent and, as a result, quite sensitive to geldanamycin-stimulated degradation. Such a lack of cross-resistance provides the rationale for current clinical studies of 17AAG in imatinib-resistant patients. ArticleCASPubMed Google Scholar
Bonvini, P., Dalla Rosa, H., Vignes, N. & Rosolen, A. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res.64, 3256–3264 (2004). ArticleCASPubMed Google Scholar
Beliakoff, J. et al. Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin. Cancer Res.9, 4961–4971 (2003). CASPubMed Google Scholar
Solit, D. B. et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/NEU and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res.8, 986–993 (2002). CASPubMed Google Scholar
Munster, P. N., Marchion, D. C., Basso, A. D. & Rosen, N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3'-kinase-AKT-dependent pathway. Cancer Res.62, 3132–3137 (2002). CASPubMed Google Scholar
Solit, D. B., Basso, A. D., Olshen, A. B., Scher, H. I. & Rosen, N. Inhibition of heat shock protein 90 function down-regulates akt kinase and sensitizes tumors to taxol. Cancer Res.63, 2139–2144 (2003). CASPubMed Google Scholar
Bagatell, R. et al. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of Hsp90 binding agents. Clin. Cancer Res.6, 3312–3318 (2000). CASPubMed Google Scholar
Clarke, P. A. et al. Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene.19, 4125–4133 (2000). ArticleCASPubMed Google Scholar
Burger, A. M., Fiebig, H. H., Stinson, S. F. & Sausville, E. A. 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs15, 377–387 (2004). ArticleCASPubMed Google Scholar
Lu, A., Ran, R., Parmentier-Batteur, S., Nee, A. & Sharp, F. R. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J. Neurochem.81, 355–364 (2002). ArticleCASPubMed Google Scholar
Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet.10, 1307–1315 (2001). ArticleCASPubMed Google Scholar
Auluck, P. K., Meulener, M. C. & Bonini, N. M. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem.280, 2873–2878 (2005). ArticleCASPubMed Google Scholar
Egorin, M. J. et al. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother. Pharmacol.47, 291–302 (2001). ArticleCASPubMed Google Scholar
Kelland, L. R., Sharp, S. Y., Rogers, P. M., Myers, T. G. & Workman, P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl Cancer Inst.91, 1940–1949 (1999). ArticleCASPubMed Google Scholar
Goetz, M. P. et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol.23, 1078–1087 (2005). ArticleCASPubMed Google Scholar
Rajkumar, S. V., Richardson, P. G., Hideshima, T. & Anderson, K. C. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol.23, 630–639 (2005). ArticleCASPubMed Google Scholar
Grem, J. L. et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol.23, 1885–1893 (2005). ArticleCASPubMed Google Scholar
Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol.23, 4152–4161 (2005). Report of a phase I trial of 17AAG demonstrating the modulation of HSP90 function by systemically tolerable drug exposures and the stabilization of disease in two melanoma patients. ArticleCASPubMed Google Scholar
Enmon, R. et al. Combination treatment with 17-N-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. Cancer Res.63, 8393–8399 (2003). CASPubMed Google Scholar
Bisht, K. S. et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res.63, 8984–8995 (2003). CASPubMed Google Scholar
McCollum, A., Toft, D. O. & Erlichman, C. Geldanamycin enhances cisplatin cytotoxicity through loss of Akt activation in A549 cells. Clin. Cancer Res.9 (Suppl.), 6178 (2003). Google Scholar
Vasilevskaya, I. A., Rakitina, T. V. & O'Dwyer, P. J. Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. Cancer Res.63, 3241–3246 (2003). CASPubMed Google Scholar
Mimnaugh, E. G. et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol. Cancer Ther.3, 551–566 (2004). ArticleCASPubMed Google Scholar
Mitsiades, C. S., Mitsiades, N., Richardson, P. G., Treon, S. P. & Anderson, K. C. Novel biologically based therapies for Waldenstrom's macroglobulinemia. Semin. Oncol.30, 309–312 (2003). ArticleCASPubMed Google Scholar
Rahmani, M. et al. Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res.63, 8420–8427 (2003). CASPubMed Google Scholar
Yu, X. et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl Cancer Inst.94, 504–513 (2002). ArticleCASPubMed Google Scholar
Dymock, B. et al. Adenine derived inhibitors of the molecular chaperone HSP90–SAR explained through multiple X-ray structures. Bioorg. Med. Chem. Lett.14, 325–328 (2004). ArticleCASPubMed Google Scholar
Chiosis, G., Lucas, B., Shtil, A., Huezo, H. & Rosen, N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg. Med. Chem.10, 3555–3564 (2002). ArticleCASPubMed Google Scholar
Rowlands, M. G. et al. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal. Biochem.327, 176–183 (2004). ArticleCASPubMed Google Scholar
Turbyville, T. J., Wijeratne, E. M. K., Whitesell, L. & Gunatilaka, A. A. L. The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways. Mol. Cancer Ther. (in the press).
Barbosa, J. A. et al. Discovery of novel small molecule Hsp90 complex inhibitors using a forward chemical genetics approach. Clin. Cancer Res.9 (Suppl.), 6176 (2003). Google Scholar
Kuduk, S. D. et al. Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorg. Med. Chem. Lett.10, 1303–1306 (2000). ArticleCASPubMed Google Scholar
Zheng, F. F. et al. Identification of a geldanamycin dimer that induces the selective degradation of HER-family tyrosine kinases. Cancer Res.60, 2090–2094 (2000). CASPubMed Google Scholar
Patel, K. et al. Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem. Biol.11, 1625–1633 (2004). ArticleCASPubMed Google Scholar
Soga, S. et al. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res.59, 2931–2938 (1999). CASPubMed Google Scholar
Eiseman, J. L. et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C. B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol.55, 21–32 (2005). ArticleCASPubMed Google Scholar
Schulte, T. W. et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the RAF-1-MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell. Biol.16, 5839–5845 (1996). ArticleCASPubMedPubMed Central Google Scholar
Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Devel.10, 1491–1502 (1996). ArticleCASPubMed Google Scholar
Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem.277, 29936–29944 (2002). ArticleCASPubMed Google Scholar
Falsone, F. M., Leptihn, S., Osterauer, A., Haslbeck, M. & Buchner, J. Oncogenic mutations reduce the stability of Src kinase. J. Mol. Biol.344, 281–291 (2004). ArticlePubMedCAS Google Scholar