Polymer conjugates as anticancer nanomedicines (original) (raw)
Atkins, J. H. & Gershell, L. J. Selective anticancer drugs. Nature Rev. Cancer1, 645–646 (2002). ArticleCAS Google Scholar
Huang, P. S. & Oliff, A. Drug-targeting strategies in cancer therapy, Current Opin. Genet. Dev.11, 104–110 (2001). ArticleCAS Google Scholar
Moses, M. A., Brem, H. & Langer, R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell4, 337–341 (2003). ArticleCASPubMed Google Scholar
Kamb, A. What's wrong with our cancer models? Nature Rev. Drug Discov.4, 161–165 (2005). ArticleCAS Google Scholar
Chabner, B. A. & Roberts, T. G. Timeline — chemotherapy and the war on cancer. Nature Rev. Cancer5, 65–72 (2005). ArticleCAS Google Scholar
Tsukagoshi, S. A new LH-RH agonist for treatment of prostate cancer, 3-month controlled-release formulation of goserelin acetate (Zoladex LA 10. 8 mg depot). Outline of pre-clinical and clinical studies. Gan To Kagaku Ryoho29, 1675–1687 (2002). PubMed Google Scholar
Heyns, C. F., Simonin, M. P., Grosgurin, P., Schall, R. & Porchet, H. C. Comparative efficacy of triptorelin pamoate and leuprolide acetate in men with advanced prostate cancer. BJU Int.92, 226–231 (2003). ArticleCASPubMed Google Scholar
Brem, H. et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet345, 1008–1012 (1995). ArticleCASPubMed Google Scholar
Westphal, M. et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol.5, 79–88 (2003). ArticleCASPubMedPubMed Central Google Scholar
US National Cancer Institute. NIH/NCI Cancer Nanotechnology Plan. US National Cancer Institute[online], (2004).
European Science Foundation. European Science Foundation Forward Look on Nanomedicine. European Science Foundation[online], (2005).
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer5, 161–171 (2005). ArticleCAS Google Scholar
Duncan, R. Targeting and intracellular delivery of drugs. in: Encyclopedia of Molecular Cell Biology and Molecular Medicine (ed. Meyers, R. A.) 163–204 (Wiley-VCH Verlag, GmbH & Co, Weinheim, Germany, 2005). Google Scholar
Damle, N. K. & Frost, P. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Phamacol.3, 386–390 (2003). ArticleCAS Google Scholar
Milenic, D. E., Brady, E. D. & Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nature Rev. Drug Disc.3, 488–498 (2004). ArticleCAS Google Scholar
Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nature Rev. Drug Discov.2, 750–763 (2002). Excellent description of ligands and technologies explored for tumour targeting. Includes information on antibodies, immunoliposomes, immuno-toxins and immuno–polymer conjugates. ArticleCAS Google Scholar
Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug Discov.4, 145–160 (2005). ArticleCAS Google Scholar
Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis Adv. Drug Del. Rev.54, 631–651 (2002). ArticleCAS Google Scholar
Kattan, J. et al. Phase 1 clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest. New Drugs10, 191–199 (1992). ArticleCASPubMed Google Scholar
O'Shaughnessy, J. A. et al. Weekly nanoparticle albumin paclitaxel (Abraxane) results in long-term disease control in patients with taxane-refractory metatastic breast cancer. Proc. San Antonio Breast Cancer Symposium 1070 (2004).
Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov.2, 347–360 (2003). ArticleCAS Google Scholar
Duncan, R., Dimitrijevic, S. & Evagorou, E. G. The role of polymer conjugates in the diagnosis and treatment of cancer. S. T. P. Pharma Sciences6, 237–263 (1996). Google Scholar
Donaruma, L. G. Synthetic biologically active polymers. Progr. Polym. Sci.4, 1–25 (1974). Article Google Scholar
Seymour, L. W. Synthetic polymers with intrinsic anticancer activity. J. Bioact. Comp. Polymers6, 178–216 (1991). ArticleCAS Google Scholar
Regelson, W. & Parker, G. The routinization of intraperitoneal (intracavitary) chemotherapy and immunotherapy. Cancer Invest.4, 29–42 (1986). ArticleCASPubMed Google Scholar
Duncan, R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs3, 175–210 (1992). ArticleCASPubMed Google Scholar
Duncan, R. Polymer-anticancer drug conjugates. in Handbook of Anticancer Drug Development (eds Budman, D., Calvert, H. & Rowinsky, E.) 239–260 (Lippincott Williams & Wilkins, Baltimore, 2003). Overview describing the rationale for design and current clinical status of polymer–anticancer conjugates for the first time from the viewpoint of cancer-drug development. Google Scholar
Kopecek, J., Kopeckova, P., Minko, T. & Lu, Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm.50, 61–81 (2000). ArticleCASPubMed Google Scholar
Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug Discov.2, 214–221 (2003). ArticleCAS Google Scholar
Pasut, G., Guiotto, A. & Veronese, F. Protein, peptide and non-peptide drug PEGylation for therapeutic application. Expert Opin. Therap. Patents14, 859–894 (2004). ArticleCAS Google Scholar
Yokoyama, M. et al. Polymeric micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J. Cont Rel.11, 269–278 (1990). ArticleCAS Google Scholar
Pack, D. W., Hoffman, A. S., Pun, S. & Stayton, P. S. Design and development of polymers for gene delivery. Nature Rev. Drug Discov.4, 581–593 (2005). ArticleCAS Google Scholar
Wagner, E. & Kloeckner, J. Gene delivery using polymer therapeutics. Adv. Polymer Sci.192, 135–174 (2005). ArticleCAS Google Scholar
Kukowska-Latallo et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.65, 5317–5324 (2005). ArticleCASPubMed Google Scholar
Duncan, R. & Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Del. Rev.57, 2215–2237 (2005). ArticleCAS Google Scholar
Maeda, H. & Konno, T. in Neocarzinostatin: The Past, Present, and Future of an Anticancer Drug (eds Maeda, H., Edo, K. & Ishida, N.) 227–267 (Springer Verlag, Berlin, 1997). Book Google Scholar
Konno, T. & Maeda, H. in: Neoplasma of the liver (eds Okada, K. & Ishak, K. G.) 343–352 (New York, 1987). Book Google Scholar
Iwai, K., Maeda, H. & Konno, T. Use of oily contrast medium for selective drug targeting to tumour: Enhanced therapeutic effect and X-ray image. Cancer Res.44, 2114–2121 (1984). Google Scholar
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent SMANCS. Cancer Res.6, 6387–6392 (1986). Milestone paper identifying for the first time the importance of passive tumour targeting through the EPR effect. Google Scholar
Ishii, H. et al. A phase I study of hepatic arterial infusion chemotherapy with zinostatin stimalamer alone for hepatocellular carcinoma. Jap. J. Clin. Oncol.33, 570–573 (2003). Article Google Scholar
Taguchi, T. et al. Phase II study of YM881 (zinostatin stimalamer) suspension injected into the hepatic artery. Research Group for Intra-arterial Injection Therapy with YM881. Gan To Kagaku Ryoho18, 1665–1675 (1991). CASPubMed Google Scholar
Okusaka, T. et al. Transarterial chemotherapy with zinostatin stimalamer for hepatocellular carcinoma. Oncology5, 276–283 (1998). Article Google Scholar
Abe, S. & Otsuki, M. Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma. Curr. Med. Chem. Anticancer Agents2, 715–726 (2002). ArticleCASPubMed Google Scholar
Davis, F. F. The origin of pegnology. Adv. Drug Del. Rev.54, 457–458 (2002). Important recent review that describes the pioneering research that opened the field of PEGylation. ArticleCAS Google Scholar
Delgado, C., Francis, G. E. & Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst.9, 249–304 (1992). CASPubMed Google Scholar
Fuertges, F. & Abuchowski, A. The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Cont. Rel.11, 139–148 (1990). ArticleCAS Google Scholar
Graham, M. L. Pegaspargase: a review of clinical studies. Adv. Drug Deliv. Rev.55, 1293–1302 (2003). ArticleCASPubMed Google Scholar
Ho, D. H. et al. Clinical pharmacology of polyethylene glycol-asparaginase. Drug Metab. Disposit.14, 349–352 (1986). Landmark paper describing the first clinical studies involving PEGylated-L-asaparaginase. CAS Google Scholar
Kurtzberg, J., Moore, J. O., Scudiery, D. & Franklin, A. A phase II study of polyethylene glycol (PEG) conjugated L-asparaginase in patients with refractory acute leukaemias. Proc. Am. Assoc. Cancer Res.29, 213 (1988). Google Scholar
Abshire, T. C., Pollock, B. H., Billett, A. L., Bradley, P. & Buchanan, G. R. Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood96, 1709–1715 (2000). CASPubMed Google Scholar
Cheng, P. N. et al. Pegylated recombinant human Arginase (rhArg-peg 5000Mw) has in vitro and in vivo anti-proliferative potential and apoptotic activities in human hepatocellular carcinoma (HCC). Proc. Am. Soc. Clin. Oncol.96, abstract 3179 (2005). Article Google Scholar
Delman, K. A. et al. Phase I/II trial of pegylated arginine deiminase (ADI-PEG20) in unresectable hepatocellular carcinoma. Proc. Am. Soc. Clin. Oncol.96, abstract 4139 (2005). Article Google Scholar
Yang, Z. PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res.64, 6673–6678 (2004). ArticleCASPubMed Google Scholar
Katre, N. V., Knauf, M. J. & Laird, W. J. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. Proc. Natl Acad. Sci. USA84, 1487–1491 (1987). The first development of a PEGylated cytokine. ArticleCASPubMedPubMed Central Google Scholar
Goodson, R. J. & Katre, N. V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology8, 343–346 (1990). CASPubMed Google Scholar
Zimmerman, R. J., Aukerman, S. L., Katre, N. V., Winkelhake, J. L. & Young, J. D. Schedule dependency of the antitumour activity and toxicity of polyethylene glycol-modified interleukin-2 in murine tumour models. Cancer Res.49, 6521–6528 (1989). CASPubMed Google Scholar
Tanaka, H., Satake-Ishikawa, R., Ishikawa, M., Matsuki, S. & Asano, K. Pharmacokinetics of recombined human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res.51, 3710–3714 (1991). CASPubMed Google Scholar
Molineux, G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr. Pharm. Des.10, 1235–1244 (2004). Excellent overview of the pioneering work that led to the design and development of PEG-G-CSF. ArticleCASPubMed Google Scholar
Holmes, F. A., et al. Comparable efficacy and safety profiles of once-per-cycle pegfilgrastim and daily injection filgrastim in chemotherapy-induced neutropenia: a multicenter dose-finding study in women with breast cancer. Ann. Oncol.13, 903–909 (2002). ArticleCASPubMed Google Scholar
Heil, G. et al. A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. Blood90, 4710–4718 (1997). CASPubMed Google Scholar
Reddy, K. R., Modi, M. W. & Pedder, S. Use of peginterferon α-2a (40KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Del. Rev.54, 571–586 (2002). Article Google Scholar
Wang, Y.-S. et al. Structural and biological characterisation of pegylated recombinant interferon α-2b and its therapeutic implications. Adv. Drug Del. Rev.54, 547–570 (2002). ArticleCAS Google Scholar
Bukowski, R. et al. Pegylated interferon α-2b treatment for patients with solid tumors: a phase I/II study. J. Clin. Oncol.20, 3841–3849 (2002). ArticleCASPubMed Google Scholar
Huang, S. F. et al. Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-α-2b and docetaxel. Cancer Res.62, 5720–5726 (2002). CASPubMed Google Scholar
Flaherty L., Heilbrun, L., Marsack, C. & Vaishampayan U. N. Phase II trial of pegylated interferon (Peg-Intron) and thalidomide (Thal) in pretreated metastatic malignant melanoma. Proc. Am. Soc Clinical Oncol. 7562 (2005).
Groves, M. D. et al. A phase II study of temozolomide plus pegylated interferon α-2b for recurrent anaplastic glioma and glioblastoma multiforme. Proc. Am. Soc Clinical Oncol. 1519 (2005).
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polymer Sci. Polymer Symp.51, 135–153 (1975). Landmark paper that stimulated the field of polymer-anticancer conjugates. ArticleCAS Google Scholar
Duncan, R. N-(2-Hydroxypropyl)methacrylamide copolymer conjugates. in: Polymeric Drug Delivery Systems (ed. Kwon, G. S.) 1–92 (Marcel Dekker, New York, 2005) Google Scholar
O'Hare, K. B., Duncan, R., Strohalm, J., Ulbrich, K. and Kopeckova, P. Polymeric drug-carriers containing doxorubicin and melanocyte-stimulating hormone: In vitro and in vivo evaluation against murine melanoma. J. Drug Targeting1, 217–229 (1993). ArticleCAS Google Scholar
Low, P. S. and Antony, A. C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Del. Rev.56, 1055–1058 (2004). ArticleCAS Google Scholar
Brocchini, S. & Duncan, R. Pendent drugs, release from polymers. in Encyclopeadia of Controlled Drug Delivery (ed. Mathiowitz, E.) 786–816 (John Wiley & Sons, New York, 1999). Comprehensive review citing all of the studies involved in the pioneering research of many different polymer conjugates. Google Scholar
Rihova, B. Biocompatibility of biomaterials: haematocompatibility, immunocompatibility, and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv. Drug Del. Rev.21, 157–176 (1996). ArticleCAS Google Scholar
Danauser-Reidl, S. et al. Phase-I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest. New Drugs11, 187–195 (1993). First clinical evaluation of a dextran–drug conjugate. Article Google Scholar
Kumazawa, E. & Ochi, Y. DE-310, a novel macromolecular carrier system for the camptothecin analog DX-8951f: potent antitumor activities in various murine tumor models. Cancer Sci.95, 168–175 (2004). ArticleCASPubMed Google Scholar
Takimoto, C. H. M. et al. A phase I and pharmacokinetic study of DE-310 administered as a 3 hour infusion every 4 weeks (wks) to patients (pts) with advanced solid tumors or lymphomas. Proc. Am. Soc. Clin. Oncol.22, 130 (abstr 522) (2003). Google Scholar
Greenwald, R. B. et al. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Del. Rev.55, 217–250 (2003). ArticleCAS Google Scholar
Rowinsky, E. K. et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J. Clin. Oncol.21, 148–157, (2003). ArticleCASPubMed Google Scholar
Duncan, R., Pratten, M. K., Cable, H. C., Ringsdorf, H. & Lloyd, J. B. Effect of molecular size of 125I-labelled poly(vinylpyrrolidone) on its pinocytosis by rat visceral yolk sacs and rat peritoneal macrophages. Biochem. J.196, 49–55 (1980). Article Google Scholar
Seymour, L. W. et al. Effect of molecular weight (MW) of _N_-(2-hydroxypropyl) methacrylamide copolymers on body distributions and rate of excretion after subcutaneous, intraperitoneal and intravenous administration to rats. J. Biomed. Mat. Res.21, 1341–1358 (1987). ArticleCAS Google Scholar
Seymour, L. W. et al. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer31, 766–770 (1995). Article Google Scholar
Duncan, R., Cable, H. C., Lloyd, J. B., Rejmanova, P. & Kopecek, J. Degradation of side-chains of _N_-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiol-proteinases. Biosci. Reps2, 1041–1046 (1983). Article Google Scholar
Duncan, R., Cable, H. C., Lloyd, J. B., Rejmanova, P. and Kopecek, J. Polymers containing enzymatically degradable bonds, 7. Design of oligopeptide side chains in poly [_N_-(2-hydroxypropyl)methacrylamide] copolymers to promote efficient degradation by lysosomal enzymes. Makromol. Chem.184, 1997–2008 (1984). Experiments involvingin vitrocell culture led to the discovery that thiol-dependent proteases were important targets for the design of peptide linkers. Article Google Scholar
Duncan, R., Cable, H. C., Rejmanova, P., Kopecek, J. & Lloyd, J. B. Tyrosinamide residues enhance pinocytic capture of _N_-(2-hydroxypropyl)methacrylamide copolymers. Biochim. Biophys Acta799, 1–8 (1984). ArticleCASPubMed Google Scholar
McCormick, L. A., Seymour, L. C. W., Duncan, R. & Kopecek, J. Interaction of a cationic _N_-(2-hydroxypropyl) methacrylamide copolymer with rat visceral yolk sacs culture in vitro and rat liver in vivo. J. Bioact. Compat. Polymers1, 4–19 (1986). ArticleCAS Google Scholar
Duncan, R., Kopecek, J., Rejmanova, P. & Lloyd, J. B. Targeting of _N_-(2-hydroxypropyl) methacrylamide copolymers to liver by incorporation of galactose residues. Biochim. Biophys. Acta755, 518–521 (1983). ArticleCASPubMed Google Scholar
Seymour, L. W. et al. Tumouritropism and anticancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br. J. Cancer70, 636–641 (1994). ArticleCASPubMedPubMed Central Google Scholar
Duncan, R. et al. Preclinical evaluation of polymer-bound doxorubicin. J. Cont. Rel.19, 331–346 (1992). Landmark paper describing the preclinical andin vivoanti-tumour studies for HPMA copolymer-doxorubicin that paved the way for clinical testing of anticancer drug conjugates. ArticleCAS Google Scholar
Vasey, P. et al. Phase I clinical and pharmacokinetic study of PKI (HPMA copolymer doxorubicin) first member of a new class of chemotherapeutics agents: drug–polymer conjugates. Clin. Cancer Res.5, 83–94 (1999). The first clinical study to evaluate a synthetic polymer–drug conjugate. CASPubMed Google Scholar
Thomson, A. H. et al. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br. J. Cancer81, 99–107 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cassidy, J. PK1: Results of Phase I studies. Proc 5th Intl Symp on Polymer Therapeutics: From Laboratory to Clinical Practice, Cardiff, UK p 20 (2000).
Seymour, L. W. et al. Hepatic drug targeting: Phase I evaluation of polymer bound doxorubicin. J. Clin. Oncol.20, 1668–1676 (2002). The first clinical study describing a targeted polymer–anticancer drug conjugate. ArticleCASPubMed Google Scholar
Julyan, P. J. et al. Preliminary clinical study of the distribution of HPMA copolymer-doxorubicin bearing galactosamine. J. Cont. Rel.57, 281–290 (1999). ArticleCAS Google Scholar
Meerum Terwogt, J. M. et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs12, 315–323 (2001). ArticleCASPubMed Google Scholar
Schoemaker, N. E. et al. A phase I and pharmacokinetic study of MAG-CPT, a water soluble polymer conjugate of camptothecin. Br. J. Cancer87, 608–614 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bissett, D. et al. Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br. J. Cancer, 91, 50–55 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wachters, F. M. et al. A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours. Br. J. Cancer90, 2261–2267 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sarapa, N. et al. Targeted delivery and preferential uptake in solid cancer of MAG-CPT, a polymer bound prodrug of camptothecin — a trial in patients undergoing surgery for colorectal carcinoma. Cancer Chemother. Pharmacol.52 424–430 (2003). ArticleCASPubMed Google Scholar
Gianasi, E. et al. HPMA copolymers platinates containing dicarboxylato ligands. Preparation, characterisation and in vitro and in vivo evaluation. J. Drug Targeting10, 549–556 (2002). ArticleCAS Google Scholar
Rademaker-Lakhai, J. M. et al. A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res.10, 3386–3395 (2004). ArticleCASPubMed Google Scholar
Rice, J. R., Stewart, D. R. & Nowotnik, D. P. Enhanced antitumour activity of a new polymer-linked DACH-platinum complex. Proc. Am. Assoc. Cancer Res.93, (2002).
Rihova, B. et al. Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data. J. Cont. Rel.91, 1–16 (2003). ArticleCAS Google Scholar
Li, C. et al. Complete regression well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res.58, 2404–2409 (1998). Wallace, Liet al. were the pioneers who designed and established the basis for PGA–paclitaxel clinical development. CASPubMed Google Scholar
Singer, J. W. et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv. Exp. Med. Biol.519, 81–99 (2003). ArticleCASPubMed Google Scholar
Singer, J. W. et al. Paclitaxel poliglumex (XYOTAX; CT-2103) [XYOTAXTM]: an intracellularly targeted taxane. Anticancer Drugs16, 243–254 (2005). ArticleCASPubMed Google Scholar
Singer, J. W. Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. J. Control. Rel.109, 120–126 (2005). ArticleCAS Google Scholar
Shaffer, S. A. et al. Proteolysis of XyotaxTM by lysosomal cathepsin B; metabolic profiling in tumor cells using LC-MS. Eur. J. Cancer38 (Suppl.), 428 (2002). Google Scholar
Todd, R. et al. Phase I and pharmacological study of CT-2103, a poly(L-glutamic acid)–paclitaxel conjugate. Proceedings of the AACR–NCI–EORTC 12th International Conference on Molecular Targets and Cancer Therapeutics: Discovery, Development, and Clinical Validation (2001). Google Scholar
Langer, C. J. CT-2103: A novel macromolecular taxane with potential advantages compared with conventional taxanes. Clin. Lung Cancer.6 (Suppl. 2), S85–S88 (2004). ArticleCASPubMed Google Scholar
Langer, C. J. et al. Paclitaxel poliglumex (PPX)/carboplatin vs paclitaxel/carboplatin for the treatment of PS2 patients with chemotherapy-naïve advanced non-small cell lung cancer (NSCLC): A phase III study. Proc. Am. Soc. Clin. Oncol.96, abstract LBA7011 (2005).
Cell Therapeutics. Improving Outcomes in PS2 Patients: Results of the XYOTAX™ Phase III STELLAR Trials. 11th World Congress on Lung Cancer, Barcelona, Spain July (2005). Landmark paper showing gender differences in the activity of a polymer–drug conjugate designed for thiol-protease activation
Socinski, M. XYOTAX in NSCLC and other solid tumors. Emerging evidence on biological sex differences: is gender-specific therapy warranted? Chemotherapy Foundation XXIII Symposium Innovative Cancer Therapy for Tomorrow, Mount Sinai November (2005). Google Scholar
Kremer, M., Judd, J., Rifkin, B., Auszmann, J., Oursler, M. J. Estrogen modulation of osteoclast lysosomal-enzyme secretion. J. Cellular Biochem.57, 271–279 (1995). ArticleCAS Google Scholar
Bhatt, R. et al. Synthesis and in vivo antitumor activity of poly(l-glutamic acid) conjugates of 20S-camptothecin. J. Med. Chem.46, 190–193 (2003). ArticleCASPubMed Google Scholar
Springett, G. M. et al. Phase I study of CT-2106 (polyglutamate camptothecin) in patients with advanced malignancies. J. Clin. Oncol.22 (Suppl.), S3127 (2004). Article Google Scholar
Sat, Y. N. et al. Comparison of vascular permeability and enzymatic activation of the polymeric prodrug HPMA copolymer-doxorubicin (PK1) in human tumour xenografts. Proc. Am. Assoc. Cancer Res.90, 41 (1999). Google Scholar
St'astny, M., Strohalm, J., Plocova, D., Ulbrich, K., Rihova, B. A possibility to overcome P-glycoprotein (PGP)-mediated multidrug resistance by antibody-targeted drugs conjugated to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer carrier. Eur. J. Cancer35, 459–466 (1999). ArticleCASPubMed Google Scholar
Malugin, A., Kopeckova, P. & Kopecek J. HPMA copolymer-bound doxorubicin induces apoptosis in human ovarian cancer cells by a Fas-independent pathway. J. Cont. Rel.91, 254 (2003). Google Scholar
Duncan, R. et al. Macromolecular prodrugs for use in targeted cancer chemotherapy: melphalan covalently coupled to N-(2-hydroxypropyl)methacrylamide copolymers. J. Cont. Rel.16, 121–136 (1991). ArticleCAS Google Scholar
Duncan, R. et al. Anticancer agents coupled to N-(2-hydroxypropyl) methacrylamide copolymers, 3. Evaluation of adriamycin conjugates against mouse leukaemia L1210 in vivo. J. Cont. Rel.10, 51–63 (1989). ArticleCAS Google Scholar
Gianasi, E. et al. HPMA copolymer platinates as novel antitumor agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer35, 994–1002 (1999). ArticleCASPubMed Google Scholar
Minko, T., Kopeckova, P. & Kopecek, J. Mechanisms of anticancer action of HPMA copolymer-bound doxorubicin. Macromol. Symp.172, 35–37 (2001). ArticleCAS Google Scholar
Kovar, L. et al. The effect of HPMA copolymer-bound doxorubicin conjugates on the expression of genes involved in apoptosis signaling. J. Cont. Rel.91, 247–248 (2003). Google Scholar
Rihova, B. et al. Acquired and specific immunological mechanisms co-responsible for efficacy of polymer-bound drugs. J. Cont. Rel.78, 97–114 (2002). ArticleCAS Google Scholar
Rihova, B. et al. Drug-HPMA-HuIg conjugates effective against human solid cancer. Adv. Expt Med. Biol.519, 125–143 (2003). ArticleCAS Google Scholar
Nemunaitis, J. J. et al. Paclitaxel poliglumex (PPX) in combination with carboplatin (carb) for the first-line treatment of patients with advanced non-small cell lung cancer (NSCLC): preliminary data. Proc. Am. Soc. Clin. Oncol.96, Abstract 7230 (2005). Article Google Scholar
Markman, M. Improving the toxicity profile of chemotherapy for advanced ovarian cancer: a potential role for CT-2103. J. Exp. Ther. Oncol.4, 131–136 (2004). CASPubMed Google Scholar
Sabbatini, P. et al. Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J. Clin. Oncol.22, 4523–4531 (2004) ArticleCASPubMed Google Scholar
Herzog, T., Barret, R. J., Edwards, R. & Oldham, F. B. Phase II study of paclitaxel poliglumex (PPX) /carboplatin (C) for 1st line induction and maintenance therapy of stage III/IV ovarian or primary peritoneal carcinoma. Proc. Am. Soc. Clin. Oncol.96, Abstract 5012 (2005).
Li, C. et al. Tumour irradiation enhances the tumour-specific distribution of poly(L-glutamic)-conjugates paclitaxel and its antitumour efficacy. Clinical Cancer Res.6, 2829–2834 (2000) CAS Google Scholar
Dipetrillo, T. A. et al. Paclitaxel poliglumex (PPX) and concurrent radiation for treatment of patient s with esophageal or gastric cancer: a dose-ranging study. Proc. Am. Soc. Clin. Oncol.96, abstract 4065 (2005).
Krinick, N. L. et al. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J. Biomater. Sci. Polym. Ed.5, 303–324 (1994). ArticleCASPubMed Google Scholar
Shiah, J.-G. et al. Combination chemotherapy and photodynamic therapy of targetable _N_-2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e6-OV-TL16 antibody immunoconjugates. J. Control. Rel.74, 249–253 (2001). ArticleCAS Google Scholar
Vicent, M. J., Greco, F., Nicholson, R. I. & Duncan, R. Polymer-drug conjugates as a novel combination therapy for the treatment of hormone-dependent cancers. Angew. Chem. Int. Ed.44, 2–6 (2005). ArticleCAS Google Scholar
Duncan, R., Vicent, M. J., Greco, F. & Nicholson, R. I. Polymer–drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocrine-Rel. Cancer12 (Suppl. 1), S189–S199 (2005) ArticleCAS Google Scholar
Greco, F, Vicent, M. J., Penning, N. A., Nicolson, R. I. & Duncan, R. HPMA-copolymer-aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. J. Drug Targeting13, 459–470 (2005). ArticleCAS Google Scholar
Sawhney, R., Brescia, F., Keane, T., Clarke, H. & Chaudhary, U. B. Phase II trial of pegylated Interferon α-2b, GM-CSF, and thalidomide in metastatic progressive renal cell carcinoma. Proc. Am. Soc. Clin. Oncol.96, abstract 4800 (2005).
Unger, C. et al. Phase I dose escalating study of PEG-PGA and DON: A new amino acid depleting anti cancer drug approach. Proc. Am. Soc. Clin. Oncol. abstract 3130 (2005).
Fang, H., Sawa, T., Akaike, T. & Maeda, H. Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res.62, 3138–3143 (2002). CASPubMed Google Scholar
Satchi, R., Connors, T. A. & Duncan, R. PDEPT: Polymer directed enzyme prodrug therapy I. HPMA copolymer-cathepsin B and PK1 as a model combination. Br. J. Cancer85, 1070–1076 (2001). ArticleCASPubMedPubMed Central Google Scholar
Satchi-Fainaro, R., Hailu, H., Davies, J. W., Summerford, C. & Duncan, R. PDEPT: Polymer directed enzyme prodrug therapy: II. HPMA copolymer-β-lactamase and HPMA copolymer-C-Dox as a model combination. Bioconj. Chem.14, 797–804 (2003). ArticleCAS Google Scholar
Satchi-Fainaro, R. et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nature Med.10, 225–261 (2004). Landmark paper describing the first polymer anti-angiogenic conjugate. ArticleCAS Google Scholar
Satchi-Fainaro, R. et al. Inhibition of vessel permeability by TNP-470 and its polymer conjugate. Cancer Cell7, 251–261 (2005). ArticleCASPubMed Google Scholar
Satchi-Fainaro, R. & Duncan, R. (Eds) Polymer therapeutics I. Adv. Polymer. Sci.192, 1–204 (2005). Google Scholar
Satchi-Fainaro, R. and Duncan R. (Eds.) Polymer therapeutics II. Adv. Polymer Sci.193, 1–228 (2006). ArticleCAS Google Scholar
Malik, N., Evagorou, E. G. & Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs10, 767–776 (1999). ArticleCASPubMed Google Scholar
Baker, J. R. et al. The synthesis and testing of anticancer therapeutic nanodevices. Biomed. Microdevices3, 61–69 (2001). ArticleCAS Google Scholar
Gillies, E. R. and Frechet, J. M. Dendrimers and dendritic polymers in drug delivery, Drug Discov. Today10, 35–43 (2005). ArticleCASPubMed Google Scholar
Kochendoerfer, G. G. et al. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science299, 884–887 (2003). ArticleCASPubMed Google Scholar
Shibata, H. et al. Functionalization of tumor necrosis factor-α using phage display technique and PEGylation improves its antitumor therapeutic window. Clin. Cancer Res.15, 8293–8300 (2004). Article Google Scholar
Zhang, N., Khawli, L. A., Hu, P. & Epstein, A. L. The generation of a novel Rituximab Polymer which leads to CD20 hyper-crosslinking-induced apoptosis in non-hodgkin's Lymphomas. Proc. Am. Assoc. Cancer Res.96, abstract 6144 (2005).
Dharap, S. S. et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl Acad. Sci. USA102, 12962–12967 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kataoka, K. et al. Block copolymer micelles as vehicles for drug delivery. J. Cont. Rel.24, 119–132 (1993) ArticleCAS Google Scholar
Bae, Y. et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconj. Chem.16, 122–130, (2005). ArticleCAS Google Scholar
Danson, S. et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer90, 2085–2091 (2004). The first clinical studies using a polymeric micelle. ArticleCASPubMedPubMed Central Google Scholar
Washart, M. L. et al. Phase I dose escalation study of a polymeric micellar formulation of paclitaxel in patients (pts) with refractory non-hematologic cancer. Proc. Am. Soc. Clin. Oncol96, abstract 2088 (2005).
Ulbrich, K. & Subr, V. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev.23, 1023–1050 (2004). ArticleCAS Google Scholar
Lloyd, J. B. The lysosome/endosome membrane: a barrier to polymer-based drug delivery. Macromol. Symp.172, 29–34 (2001). ArticleCAS Google Scholar
Minko, T., Kopeckova, P., Pozharov, V. & Kopecek, J. HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J. Cont. Rel.54, 223–233 (1998). ArticleCAS Google Scholar