microRNAs join the p53 network — another piece in the tumour-suppression puzzle (original) (raw)
Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature432, 307–315 (2004). ArticleCAS Google Scholar
Vogelstein, B. B., Lane, D. D. & Levine, A. A. J. Surfing the p53 network. Nature408, 307–310 (2000). CAS Google Scholar
Bommer, G. T. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol.17, 1298–1307 (2007). ArticleCAS Google Scholar
Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell26, 745–752 (2007). ArticleCAS Google Scholar
He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature447, 1130–1134 (2007). ArticleCAS Google Scholar
Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell26, 731–743 (2007). ArticleCAS Google Scholar
Tarasov, V. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle6, 1586–1593 (2007). ArticleCAS Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCAS Google Scholar
Zamore, P. D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science309, 1519–1524 (2005). ArticleCAS Google Scholar
Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev.18, 504–511 (2004). ArticleCAS Google Scholar
Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb. Symp. Quant. Biol.71, 513–521 (2006). ArticleCAS Google Scholar
Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65, 7065–7070 (2005). ArticleCAS Google Scholar
Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103, 2257–2261 (2006). ArticleCAS Google Scholar
Akao, Y., Nakagawa, Y. & Naoe, T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol. Rep.16, 845–850 (2006). CASPubMed Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). ArticleCAS Google Scholar
Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet.38, 1060–1065 (2006). ArticleCAS Google Scholar
He, L. et al. A microRNA polycistron as a potential human oncogene. Nature435, 828–833 (2005). ArticleCAS Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). ArticleCAS Google Scholar
Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124, 1169–1181 (2006). ArticleCAS Google Scholar
Tam, W. & Dahlberg, J. E. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer45, 211–212 (2006). ArticleCAS Google Scholar
Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). ArticleCAS Google Scholar
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell120, 635–647 (2005). ArticleCAS Google Scholar
Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science315, 1576–1579 (2007). ArticleCAS Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). ArticleCAS Google Scholar
Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.20, 2202–2207 (2006). ArticleCAS Google Scholar
Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet.39, 673–677 (2007). ArticleCAS Google Scholar
Yu, J. J. et al. Identification and classification of p53-regulated genes. Proc. Natl Acad. Sci. USA96, 14517–14522 (1999). ArticleCAS Google Scholar
Zhao, R. R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev.14, 981–993 (2000). ArticleCAS Google Scholar
Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature377, 552–557 (1995). ArticleCAS Google Scholar
Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell124, 207–219 (2006). ArticleCAS Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCAS Google Scholar
Spurgers, K. B. et al. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J. Biol. Chem.281, 25134–25142 (2006). ArticleCAS Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). ArticleCAS Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). ArticleCAS Google Scholar
Versteeg, R. et al. 1p36: every subband a suppressor? Eur. J. Cancer31A, 538–541 (1995). ArticleCAS Google Scholar
Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell128, 459–475 (2007). ArticleCAS Google Scholar
Welch, C., Chen, Y. & Stallings, R. L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene26, 5017–5022 (2007). ArticleCAS Google Scholar
Gaur, A. et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res.67, 2456–2468 (2007). ArticleCAS Google Scholar
Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y. & Ju, J. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin. Cancer Res.12, 2014–2024 (2006). ArticleCAS Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). ArticleCAS Google Scholar