Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer (original) (raw)
Petrelli, A. & Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem.15, 422–432 (2008). ArticleCASPubMed Google Scholar
Podar, K. et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl Acad. Sci. USA103, 19478–19483 (2006). ArticleCASPubMedPubMed Central Google Scholar
Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet368, 1329–1338 (2006). ArticleCASPubMed Google Scholar
Le Tourneau, C., Faivre, S. & Raymond, E. New developments in multitargeted therapy for patients with solid tumours. Cancer Treat. Rev.34, 37–48 (2008). ArticleCASPubMed Google Scholar
Kerr, D. Clinical development of gene therapy for colorectal cancer. Nature Rev. Cancer3, 615–622 (2003). ArticleCAS Google Scholar
Zeimet, A. G. & Marth, C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol4, 415–422 (2003). ArticleCASPubMed Google Scholar
McCormick, F. Cancer gene therapy: fringe or cutting edge? Nature Rev. Cancer1, 130–141 (2001). ArticleCAS Google Scholar
Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med.10, 909–915 (2004). ArticleCASPubMed Google Scholar
Amato, R. J. et al. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. J. Immunother.31, 577–585 (2008). ArticleCASPubMed Google Scholar
Gulley, J. L. et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin. Cancer Res.14, 3060–3069 (2008). ArticleCASPubMedPubMed Central Google Scholar
Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med.3, 639–645 (1997). ArticleCASPubMed Google Scholar
Bell, J. C., Lichty, B. & Stojdl, D. Getting oncolytic virus therapies off the ground. Cancer Cell4, 7–11 (2003). ArticleCASPubMed Google Scholar
Parato, K. A., Senger, D., Forsyth, P. A. & Bell, J. C. Recent progress in the battle between oncolytic viruses and tumours. Nature Rev. Cancer5, 965–976 (2005). ArticleCAS Google Scholar
Thorne, S. H., Hermiston, T. & Kirn, D. Oncolytic virotherapy: approaches to tumor targeting and enhancing antitumor effects. Semin. Oncol.32, 537–548 (2005). ArticleCASPubMed Google Scholar
Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. Reovirus therapy of tumors with activated Ras pathway. Science282, 1332–1334 (1998). ArticleCASPubMed Google Scholar
Stojdl, D. F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Med.6, 821–825 (2000). ArticleCASPubMed Google Scholar
Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell4, 263–275 (2003). ArticleCASPubMed Google Scholar
Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science274, 373–376 (1996). ArticleCASPubMed Google Scholar
Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective antitumoral efficacy. Nature Med.6, 1134–1139 (2000). ArticleCASPubMed Google Scholar
Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D. & Martuza, R. L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med.1, 938–943 (1995). ArticleCASPubMed Google Scholar
Mineta, T., Rabkin, S. D. & Martuza, R. L. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res.54, 3963–3966 (1994). CASPubMed Google Scholar
Comins, C. et al. Reovirus: Viral therapy for cancer 'as nature intended'. Clin. Oncol.20, 548–554 (2008). ArticleCAS Google Scholar
Kirn, D., Hermiston, T. & McCormick, F. ONYX-015: Clinical data are encouraging. Nature Med.4, 1341–1342 (1998). ArticleCASPubMed Google Scholar
Khuri, F. et al. A controlled trial of Onyx-015, an E1B gene-deleted adenovirus, in combination with chemotherapy in patients with recurrent head and neck cancer. Nature Med.6, 879–885 (2000). ArticleCASPubMed Google Scholar
Nemunaitis, J. et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol.19, 289–298 (2001). ArticleCASPubMed Google Scholar
Reid, T. et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther.8, 1618–1626 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reid, T. et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res.62, 6070–6079 (2002). CASPubMed Google Scholar
Liu, T. C., Hwang, T. H., Bell, J. C. & Kirn, D. H. Translation of targeted oncolytic virotherapeutics from the lab into the clinic, and back again: a high-value iterative loop. Mol. Ther.16, 1006–1008 (2008). ArticleCASPubMed Google Scholar
Kim, J. H. et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol. Ther.14, 361–370 (2006). ArticleCASPubMed Google Scholar
Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J. & Thorne, S. H. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med.4, e353 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Thorne, S. H. et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J. Clin. Invest.117, 3350–3358 (2007). ArticleCASPubMedPubMed Central Google Scholar
McCart, J. A. et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res.61, 8751–8757 (2001). CASPubMed Google Scholar
Guo, Z. S. et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res.65, 9991–9998 (2005). ArticleCASPubMed Google Scholar
Liu, T. C., Hwang, T., Park, B. H., Bell, J. & Kirn, D. H. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol. Ther.16, 1637–1642 (2008). ArticleCASPubMed Google Scholar
Park, B. H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol.9, 533–542 (2008). ArticleCASPubMed Google Scholar
Moss, B. in Field's Virology Ch. 84 (eds Fields, B. N., Knipe, D.M. & Howley, P. M.) (Lippincott-Raven, Philadelphia, 2001). Google Scholar
Fenner, F., Henderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. Smallpox and its eradication (World Health Organization, Geneva, 1988). Google Scholar
Cono, J., Casey, C. G. & Bell, D. M. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm. Rep.52, 1–28 (2003). PubMed Google Scholar
Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity28, 710–722 (2008). ArticleCASPubMed Google Scholar
Putz, M. M., Midgley, C. M., Law, M. & Smith, G. L. Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nature Med.12, 1310–1315 (2006). ArticlePubMedCAS Google Scholar
Graham, B. S. et al. Determinants of antibody response after recombinant gp160 boosting in vaccinia-naive volunteers primed with gp160-recombinant vaccinia virus. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Clinical Trials Network. J. Infect. Dis.170, 782–786 (1994). ArticleCASPubMed Google Scholar
Kanesa-thasan, N. et al. Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus — poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans. Vaccine19, 483–491 (2000). ArticleCASPubMed Google Scholar
McClain, D. J., Summers, P. L., Harrison, S. A., Schmaljohn, A. L. & Schmaljohn, C. S. Clinical evaluation of a vaccinia-vectored Hantaan virus vaccine. J. Med. Virol.60, 77–85 (2000). ArticleCASPubMed Google Scholar
Cadoz, M. et al. Immunisation with canarypox virus expressing rabies glycoprotein. Lancet339, 1429–1432 (1992). ArticleCASPubMed Google Scholar
Ockenhouse, C. F. et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J. Infect. Dis.177, 1664–16673 (1998). ArticleCASPubMed Google Scholar
Doehn, C., Kausch, I., Bohmer, T., Sommerauer, M. & Jocham, D. Drug evaluation: Therion's rV-PSA-TRICOM + rF-PSA-TRICOM prime–boost prostate cancer vaccine. Curr. Opin. Mol. Ther.9, 183–189 (2007). CASPubMed Google Scholar
Rochlitz, C. et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J. Gene. Med.5, 690–699 (2003). ArticleCASPubMed Google Scholar
Jager, E. et al. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc. Natl Acad. Sci. USA103, 14453–14458 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Wein, L. M., Wu, J. T. & Kirn, D. H. Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res.63, 1317–1324 (2003). CASPubMed Google Scholar
Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science320, 531–535 (2008). ArticleCASPubMed Google Scholar
Vanderplasschen, A., Mathew, E., Hollinshead, M., Sim, R. B. & Smith, G. L. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc. Natl Acad. Sci. USA95, 7544–7549 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bell, E. et al. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology325, 425–431 (2004). ArticleCASPubMed Google Scholar
Kirn, D. H., Wang, Y., Liang, W., Contag, C. H. & Thorne, S. H. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res.68, 2071–2075 (2008). ArticleCASPubMed Google Scholar
Wittek, R. Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. Int. J. Infect. Dis.10, 193–201 (2006). ArticlePubMed Google Scholar
De Clercq, E. Cidofovir in the treatment of poxvirus infections. Antiviral Res.55, 1–13 (2002). ArticleCASPubMed Google Scholar
Yang, G. et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol.79, 13139–13149 (2005). ArticleCASPubMedPubMed Central Google Scholar
Reeves, P. M. et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nature Med.11, 731–739 (2005). ArticleCASPubMed Google Scholar
Smith, G. L. & Moss, B. Infectious poxvirus vectors have capacity for at least 25000 base pairs of foreign DNA. Gene25, 21–28 (1983). ArticleCASPubMed Google Scholar
Wang, F. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nature Immunol.5, 1266–1274 (2004). ArticleCAS Google Scholar
Wang, G. et al. Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc. Natl Acad. Sci. USA103, 4640–4645 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yu, Y. A. et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature Biotechnol.22, 313–320 (2004). ArticleCAS Google Scholar
Katsafanas, G. C. & Moss, B. Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. J. Biol. Chem.279, 52210–52217 (2004). ArticleCASPubMed Google Scholar
Yang, H. et al. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Invest.115, 379–387 (2005). ArticleCASPubMedPubMed Central Google Scholar
Foloppe, J. et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther.15, 1361–1371 (2008). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res.67, 10038–10046 (2007). ArticleCASPubMed Google Scholar
Gnant, M. F. et al. Tumor-specific gene delivery using recombinant vaccinia virus in a rabbit model of liver metastases. J. Natl Cancer Inst.91, 1744–1750 (1999). ArticleCASPubMed Google Scholar
Buller, R. M., Smith, G. L., Cremer, K., Notkins, A. L. & Moss, B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature317, 813–815 (1985). ArticleCASPubMed Google Scholar
Hengstschlager, M. et al. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J. Biol. Chem.269, 13836–13842 (1994). ArticleCASPubMed Google Scholar
Buller, R. M., Chakrabarti, S., Moss, B. & Fredrickson, T. Cell proliferative response to vaccinia virus is mediated by VGF. Virology164, 182–192 (1988). ArticleCASPubMed Google Scholar
de Magalhaes, J. C. et al. A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J. Biol. Chem.276, 38353–38360 (2001). ArticleCASPubMed Google Scholar
Alcami, A. & Smith, G. L. A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell71, 153–167 (1992). ArticleCASPubMed Google Scholar
Kettle, S. et al. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. J. Gen. Virol.78 (Pt 3), 677–685 (1997). ArticleCASPubMed Google Scholar
Taylor, J. M., Quilty, D., Banadyga, L. & Barry, M. The vaccinia virus protein F1L interacts with Bim and inhibits activation of the pro-apoptotic protein Bax. J. Biol. Chem.281, 39728–39739 (2006). ArticleCASPubMed Google Scholar
Yang, S. et al. A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Ther.14, 638–647 (2007). ArticlePubMedCAS Google Scholar
Colamonici, O. R., Domanski, P., Sweitzer, S. M., Larner, A. & Buller, R. M. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α transmembrane signaling. J. Biol. Chem.270, 15974–15978 (1995). ArticleCASPubMed Google Scholar
Symons, J. A., Alcami, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell81, 551–560 (1995). ArticleCASPubMed Google Scholar
Clarke, M. F. & Becker, M. W. Stem cells: the real culprits in cancer? Sci. Am.295, 52–59 (2006). ArticlePubMed Google Scholar
Clarke, M. F. & Fuller, M. Stem cells and cancer: two faces of eve. Cell124, 1111–1115 (2006). ArticleCASPubMed Google Scholar
Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev. Immunol.5, 331–342 (2005). ArticleCAS Google Scholar
Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol.28, 429–436 (2007). ArticleCASPubMed Google Scholar
Zhu, J., Martinez, J., Huang, X. & Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β. Blood109, 619–625 (2007). ArticleCASPubMedPubMed Central Google Scholar
Breitbach, C. J. et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther.15, 1686–1693 (2007). ArticleCASPubMed Google Scholar
Gnant, M. F., Puhlmann, M., Alexander, H. R. Jr & Bartlett, D. L. Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res.59, 3396–3403 (1999). CASPubMed Google Scholar
Kumar, S., Gao, L., Yeagy, B. & Reid, T. Virus combinations and chemotherapy for the treatment of human cancers. Curr. Opin. Mol. Ther.10, 371–379 (2008). PubMed Google Scholar
Panchanathan, V., Chaudhri, G. & Karupiah, G. Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function. J. Virol.80, 6333–6338 (2006). ArticleCASPubMedPubMed Central Google Scholar
Naito, T., Kaneko, Y. & Kozbor, D. Oral vaccination with modified vaccinia virus Ankara attached covalently to TMPEG-modified cationic liposomes overcomes pre-existing poxvirus immunity from recombinant vaccinia immunization. J. Gen. Virol.88, 61–70 (2007). ArticleCASPubMed Google Scholar
Green, N. K. et al. Retargeting polymer-coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer. J. Gene. Med.10, 280–289 (2008). ArticleCASPubMed Google Scholar
Blasco, R., Sisler, J. R. & Moss, B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol.67, 3319–3325 (1993). ArticleCASPubMedPubMed Central Google Scholar
Katz, E., Ward, B. M., Weisberg, A. S. & Moss, B. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J. Virol.77, 12266–12275 (2003). ArticleCASPubMedPubMed Central Google Scholar
Thorne, S. H., Negrin, R. S. & Contag, C. H. Synergistic antitumor effects of immune cell–viral biotherapy. Science311, 1780–1784 (2006). ArticleCASPubMed Google Scholar
Cole, C. et al. Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nature Med.11, 1073–1081 (2005). ArticleCASPubMed Google Scholar
Qiao, J. et al. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nature Med.14, 37–44 (2008). ArticleCASPubMed Google Scholar
Power, A. T. et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol. Ther.15, 123–130 (2007). ArticleCASPubMed Google Scholar
Ong, H. T., Hasegawa, K., Dietz, A. B., Russell, S. J. & Peng, K. W. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther.14, 324–333 (2006). ArticlePubMedCAS Google Scholar
Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA102, 3738–3743 (2005). ArticleCASPubMedPubMed Central Google Scholar
Herberman, R. B. Cancer immunotherapy with natural killer cells. Semin. Oncol.29, 27–30 (2002). ArticleCASPubMed Google Scholar
Baker, J., Verneris, M. R., Ito, M., Shizuru, J. A. & Negrin, R. S. Expansion of cytolytic CD8+ natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon γ production. Blood97, 2923–2931 (2001). ArticleCASPubMed Google Scholar
Chakrabarti, S., Sisler, J. R. & Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques23, 1094–1097 (1997). ArticleCASPubMed Google Scholar
Davison, A. J. & Moss, B. Structure of vaccinia virus late promoters. J. Mol. Biol.210, 771–784 (1989). ArticleCASPubMed Google Scholar
Banaszynski, L. A., Sellmyer, M. A., Contag, C. H., Wandless, T. J. & Thorne, S. H. Chemical control of protein stability and function in living animals. Nature Med.14, 1123–1127 (2008). ArticleCASPubMed Google Scholar
Hodge, J. W. et al. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res.59, 5800–5807 (1999). CASPubMed Google Scholar
Thorne, S. H., Tam, B. Y., Kirn, D. H., Contag, C. H. & Kuo, C. J. Selective intratumoral amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumor efficacy. Mol. Ther.13, 938–946 (2006). ArticleCASPubMed Google Scholar
Kim, J. H. et al. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J. Natl Cancer Inst.98, 1482–1493 (2006). ArticleCASPubMed Google Scholar
McCart, J. A. et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther.7, 1217–1223 (2000). ArticleCASPubMed Google Scholar
Chalikonda, S. et al. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther.15, 115–125 (2008). ArticleCASPubMed Google Scholar
Smith, G. L., Symons, J. A., Khanna, A., Vanderplasschen, A. & Alcami, A. Vaccinia virus immune evasion. Immunol. Rev.159, 137–154 (1997). ArticleCASPubMed Google Scholar
Thorne, S. H. & Contag, C. H. Using in vivo bioluminescence imaging to shed light on cancer biology. Proc. IEEE93, 750–762 (2005). ArticleCAS Google Scholar
Luker, K. E., Hutchens, M., Schultz, T., Pekosz, A. & Luker, G. D. Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology341, 284–300 (2005). ArticleCASPubMed Google Scholar
Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell7, 5–15 (2005). CASPubMed Google Scholar
Groot-Wassink, T., Aboagye, E. O., Glaser, M., Lemoine, N. R. & Vassaux, G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum. Gene Ther.13, 1723–1735 (2002). ArticleCASPubMed Google Scholar
McCart, J. A. et al. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol. Ther.10, 553–561 (2004). ArticleCASPubMed Google Scholar
Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nature Med.6, 351–355 (2000). ArticleCASPubMed Google Scholar
Halsell, J. S. et al. Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA289, 3283–3289 (2003). ArticlePubMed Google Scholar
Kwak, H., Horig, H. & Kaufman, H. L. Poxviruses as vectors for cancer immunotherapy. Curr. Opin. Drug Discov. Devel.6, 161–168 (2003). CASPubMed Google Scholar
Essajee, S. & Kaufman, H. L. Poxvirus vaccines for cancer and HIV therapy. Expert Opin. Biol. Ther.4, 575–588 (2004). ArticleCASPubMed Google Scholar
Arlen, P. M., Kaufman, H. L. & DiPaola, R. S. Pox viral vaccine approaches. Semin. Oncol.32, 549–555 (2005). ArticleCASPubMed Google Scholar
Hunter-Craig, I., Newton, K. A., Westbury, G. & Lacey, B. W. Use of vaccinia virus in the treatment of metastatic malignant melanoma. BMJ2, 512–515 (1970). ArticleCASPubMedPubMed Central Google Scholar
Roenigk, H. H. Jr, Deodhar, S., St Jacques, R. & Burdick, K. Immunotherapy of malignant melanoma with vaccinia virus. Arch. Dermatol.109, 668–673 (1974). ArticlePubMed Google Scholar
Burdick, K. H. Malignant melanoma treated with vaccinia injections. Arch. Dermatol.82, 438–439 (1960). Google Scholar
Mastrangelo, M. J., Maguire, H. C. & Lattime, E. C. Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma. Adv. Exp. Med. Biol.465, 391–400 (2000). ArticleCASPubMed Google Scholar
Belisario, J. C. & Milton, G. W. The experimental local therapy of cutaneous metastases of malignant melanoblastomas with cow pox vaccine or colcemid (demecolcine or omaine). Aust. J. Dermatol.6, 113–118 (1961). ArticleCASPubMed Google Scholar
Lee, S. S., Eisenlohr, L. C., McCue, P. A., Mastrangelo, M. J. & Lattime, E. C. Intravesical gene therapy: in vivo gene transfer using recombinant vaccinia virus vectors. Cancer Res.54, 3325–3328 (1994). CASPubMed Google Scholar
Mastrangelo, M. J. et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther.6, 409–422 (1999). ArticleCASPubMed Google Scholar
Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol.25, 1753–1759 (2007). ArticlePubMed Google Scholar
Ramesh, N. et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin. Cancer Res.12, 305–313 (2006). ArticleCASPubMed Google Scholar
Hu, J. C. et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res.12, 6737–6747 (2006). ArticleCASPubMed Google Scholar