Targeting the dynamic HSP90 complex in cancer (original) (raw)
Wandinger, S. K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem.283, 18473–18477 (2008). ArticleCASPubMed Google Scholar
Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell120, 715–727 (2005). ArticleCASPubMed Google Scholar
Pratt, W. B. & Toft, D. O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood)228, 111–133 (2003). ArticleCAS Google Scholar
Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer5, 761–772 (2005). ArticleCAS Google Scholar
Dezwaan, D. C. & Freeman, B. C. HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle7, 1006–1012 (2008). ArticleCASPubMed Google Scholar
Pratt, W. B., Morishima, Y. & Osawa, Y. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J. Biol. Chem.283, 22885–22889 (2008). ArticleCASPubMedPubMed Central Google Scholar
McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell131, 121–135 (2007). ArticleCASPubMed Google Scholar
Tsaytler, P. A., Krijgsveld, J., Goerdayal, S. S., Rudiger, S. & Egmond, M. R. Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones14, 629–638 (2009). ArticleCASPubMedPubMed Central Google Scholar
Freeman, B. C. & Yamamoto, K. R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science296, 2232–2235 (2002). ArticleCASPubMed Google Scholar
Zhao, R. & Houry, W. A. Hsp90: a chaperone for protein folding and gene regulation. Biochem. Cell Biol.83, 703–710 (2005). ArticleCASPubMed Google Scholar
Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C. & Paro, R. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc. Natl Acad. Sci. USA106, 1157–1162 (2009). ArticleCASPubMedPubMed Central Google Scholar
Eccles, S. A. et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res.68, 2850–2860 (2008). ArticleCASPubMed Google Scholar
Chiosis, G. & Tao, H. Purine-scaffold Hsp90 inhibitors. IDrugs9, 778–782 (2006). CASPubMed Google Scholar
Workman, P., Burrows, F., Neckers, L. & Rosen, N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci.1113, 202–216 (2007). ArticleCASPubMed Google Scholar
Pearl, L. H. & Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem.75, 271–294 (2006). ArticleCASPubMed Google Scholar
Donnelly, A. & Blagg, B. S. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem.15, 2702–2717 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ali, M. M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature440, 1013–1017 (2006). This paper describes the first crystal structure of a full-length HSP90–co-chaperone complex. ArticleCASPubMedPubMed Central Google Scholar
Prodromou, C. & Pearl, L. H. Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets3, 301–323 (2003). ArticleCASPubMed Google Scholar
Wayne, N. & Bolon, D. N. Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. J. Biol. Chem.282, 35386–35395 (2007). ArticleCASPubMed Google Scholar
Onuoha, S. C., Coulstock, E. T., Grossmann, J. G. & Jackson, S. E. Structural studies on the co-chaperone Hop and its complexes with Hsp90. J. Mol. Biol.379, 732–744 (2008). ArticleCASPubMed Google Scholar
Vaughan, C. K. et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol. Cell23, 697–707 (2006). This paper describes the first structure of an HSP90–co-chaperone–client protein complex. ArticleCASPubMedPubMed Central Google Scholar
Southworth, D. R. & Agard, D. A. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell32, 631–640 (2008). This paper reports the species-dependence of the conformational states sampled by HSP90. ArticleCASPubMedPubMed Central Google Scholar
McLaughlin, S. H., Ventouras, L. A., Lobbezoo, B. & Jackson, S. E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol.344, 813–826 (2004). ArticleCASPubMed Google Scholar
Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J.23, 1402–1410 (2004). ArticleCASPubMed Google Scholar
Mickler, M., Hessling, M., Ratzke, C., Buchner, J. & Hugel, T. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nature Struct. Mol. Biol.16, 281–286 (2009). ArticleCAS Google Scholar
Hessling, M., Richter, K. & Buchner, J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature Struct. Mol. Biol.16, 287–293 (2009). References 26 and 27 dissect the conformational intermediates of the HSP90 chaperone cycle. ArticleCAS Google Scholar
Panaretou, B. et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell10, 1307–1318 (2002). ArticleCASPubMed Google Scholar
Forafonov, F. et al. p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol. Cell. Biol.28, 3446–3456 (2008). ArticleCASPubMedPubMed Central Google Scholar
Retzlaff, M. et al. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell37, 344–354 (2010). ArticleCASPubMed Google Scholar
Koulov, A. V. et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell21, 871–884 (2010). This paper describes how AHA1 interaction with HSP90 affects client interaction with the HSP90 complex and chaperone efficiency. ArticleCASPubMedPubMed Central Google Scholar
Miyata, Y. & Nishida, E. Evaluating CK2 activity with the antibody specific for the CK2-phosphorylated form of a kinase-targeting cochaperone Cdc37. Mol. Cell. Biochem.316, 127–134 (2008). ArticleCASPubMed Google Scholar
Smith, J. R. & Workman, P. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle8, 362–372 (2009). ArticleCASPubMed Google Scholar
Echeverria, P. C. et al. Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin β. Mol. Cell. Biol.29, 4788–4797 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pratt, W. B., Morishima, Y., Murphy, M. & Harrell, M. Chaperoning of glucocorticoid receptors. Handb. Exp. Pharmacol.172, 111–138 (2006). ArticleCAS Google Scholar
Wochnik, G. M. et al. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem.280, 4609–4616 (2005). ArticleCASPubMed Google Scholar
Boulon, S. et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol.180, 579–595 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vaughan, C. K. et al. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol. Cell31, 886–895 (2008). ArticleCASPubMedPubMed Central Google Scholar
McDowell, C. L., Bryan Sutton, R. & Obermann, W. M. Expression of Hsp90 chaperone [corrected] proteins in human tumor tissue. Int. J. Biol. Macromol.45, 310–314 (2009). ArticleCASPubMed Google Scholar
Gray, P. J. Jr, Stevenson, M. A. & Calderwood, S. K. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res.67, 11942–11950 (2007). ArticleCASPubMed Google Scholar
Holmes, J. L., Sharp, S. Y., Hobbs, S. & Workman, P. Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res.68, 1188–1197 (2008). ArticlePubMedCAS Google Scholar
Scroggins, B. T. & Neckers, L. Post-translational modification of heat shock protein 90: impact on chaperone function. Expert Opin. Drug Discov.2, 1403–1414 (2007). ArticleCASPubMed Google Scholar
Mimnaugh, E. G., Worland, P. J., Whitesell, L. & Neckers, L. M. Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. J. Biol. Chem.270, 28654–28659 (1995). ArticleCASPubMed Google Scholar
Wandinger, S. K., Suhre, M. H., Wegele, H. & Buchner, J. The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J.25, 367–376 (2006). ArticleCASPubMedPubMed Central Google Scholar
Duval, M., Le Boeuf, F., Huot, J. & Gratton, J. P. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol. Biol. Cell18, 4659–4668 (2007). This paper reports the tyrosine phosphorylation of HSP90 by a client kinase. ArticleCASPubMedPubMed Central Google Scholar
Kurokawa, M., Zhao, C., Reya, T. & Kornbluth, S. Inhibition of apoptosome formation by suppression of Hsp90β phosphorylation in tyrosine kinase-induced leukemias. Mol. Cell. Biol.28, 5494–5506 (2008). ArticleCASPubMedPubMed Central Google Scholar
Old, W. M. et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol. Cell34, 115–131 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lees-Miller, S. P. & Anderson, C. W. Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J. Biol. Chem.264, 2431–2437 (1989). CASPubMed Google Scholar
Miyata, Y. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell. Mol. Life Sci.66, 1840–1849 (2009). ArticleCASPubMed Google Scholar
Harvey, S. L., Charlet, A., Haas, W., Gygi, S. P. & Kellogg, D. R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell122, 407–420 (2005). ArticleCASPubMed Google Scholar
Mollapour, M. et al. Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol. Cell37, 333–343 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mollapour, M., Tsutsumi, S. & Neckers, L. Hsp90 phosphorylation, Wee1 and the cell cycle. Cell Cycle9, 1–7 (2010). Article Google Scholar
Yu, X. et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl Cancer Inst.94, 504–513 (2002). ArticleCASPubMed Google Scholar
Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell18, 601–607 (2005). ArticleCASPubMed Google Scholar
Yang, Y. et al. Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion. Cancer Res.68, 4833–4842 (2008). ArticleCASPubMedPubMed Central Google Scholar
Maloney, A. et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res.67, 3239–3253 (2007). ArticleCASPubMed Google Scholar
Martinez-Ruiz, A. et al. _S_-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc. Natl Acad. Sci. USA102, 8525–8530 (2005). ArticleCASPubMedPubMed Central Google Scholar
Morra, G., Verkhivker, G. & Colombo, G. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. PLoS Comput. Biol.5, e1000323 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Compton, S. A., Elmore, L. W., Haydu, K., Jackson-Cook, C. K. & Holt, S. E. Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol. Cell. Biol.26, 1452–1462 (2006). ArticleCASPubMedPubMed Central Google Scholar
Toogun, O. A., Dezwaan, D. C. & Freeman, B. C. The hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol.28, 457–467 (2008). ArticleCASPubMed Google Scholar
Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther.79, 129–168 (1998). ArticleCASPubMed Google Scholar
Echeverria, P. C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta1803, 641–649 (2009). ArticlePubMedCAS Google Scholar
Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell94, 471–480 (1998). ArticleCASPubMed Google Scholar
Conde, R., Belak, Z. R., Nair, M., O'Carroll, R. F. & Ovsenek, N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem. Cell Biol.87, 845–851 (2009). ArticleCASPubMed Google Scholar
Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell130, 1005–1018 (2007). ArticleCASPubMedPubMed Central Google Scholar
Min, J. N., Huang, L., Zimonjic, D. B., Moskophidis, D. & Mivechi, N. F. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene26, 5086–5097 (2007). References 69 and 70 highlight the importance of HSF1 for carcinogenesis. ArticleCASPubMed Google Scholar
Au, Q., Zhang, Y., Barber, J. R., Ng, S. C. & Zhang, B. Identification of inhibitors of HSF1 functional activity by high-content target-based screening. J. Biomol. Screen.14, 1165–1175 (2009). ArticleCASPubMed Google Scholar
Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood113, 5536–5548 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cerchietti, L. C. et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood113, 3397–3405 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cerchietti, L. C. et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nature Med.15, 1369–1376 (2009). ArticleCASPubMed Google Scholar
Choo, A. et al. The role of IRF1 and IRF2 transcription factors in leukaemogenesis. Curr. Gene Ther.6, 543–550 (2006). ArticleCASPubMed Google Scholar
Narayan, V., Eckert, M., Zylicz, A., Zylicz, M. & Ball, K. L. Cooperative regulation of the interferon regulatory factor-1 tumor suppressor protein by core components of the molecular chaperone machinery. J. Biol. Chem.284, 25889–25899 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bach, C. & Slany, R. K. Molecular pathology of mixed-lineage leukemia. Future Oncol.5, 1271–1281 (2009). ArticleCASPubMed Google Scholar
Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol.24, 9630–9645 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hamamoto, R. et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nature Cell Biol.6, 731–740 (2004). This paper reports that HSP90 inhibitor treatment suppresses SMYD3 activity in cancer cells. ArticleCASPubMed Google Scholar
Komatsu, S. et al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis30, 1139–1146 (2009). ArticleCASPubMed Google Scholar
Abu-Farha, M. et al. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol. Cell. Proteomics7, 560–572 (2008). ArticleCASPubMed Google Scholar
Sekimoto, T. et al. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase η at replication stalling sites in UV-irradiated cells. Mol. Cell37, 79–89 (2010). ArticleCASPubMed Google Scholar
Specchia, V. et al. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature463, 662–665 (2010). ArticleCASPubMed Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128, 1089–1103 (2007). ArticleCASPubMed Google Scholar
Nishida, K. M. et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J.28, 3820–3831 (2009). ArticleCASPubMedPubMed Central Google Scholar
Oh, W. K. et al. A single arm phase II trial of IPI-504 in patients with castration resistant prostate cancer (CRPC). Genitourinary Cancers Symp. Abstr. 219 (2009).
Heath, E. I. et al. A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin. Cancer Res.14, 7940–7946 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yano, A. et al. Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc. Natl Acad. Sci. USA105, 15541–15546 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zoubeidi, A. et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res.67, 10455–10465 (2007). ArticleCASPubMed Google Scholar
Solit, D. B. et al. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res.14, 8302–8307 (2008). ArticleCASPubMedPubMed Central Google Scholar
Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA103, 657–662 (2006). ArticleCAS Google Scholar
da Rocha Dias, S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res.65, 10686–10691 (2005). ArticleCASPubMed Google Scholar
Mimnaugh, E. G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem.271, 22796–22801 (1996). ArticleCASPubMed Google Scholar
Modi, S. et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC). J. Clin. Oncol. Abstr.26, 1027 (2008). Article Google Scholar
Xu, W. et al. Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition. Br. J. Cancer97, 741–744 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chandarlapaty, S. et al. Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth. Oncogene29, 325–334 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl Acad. Sci. USA106, 8368–8373 (2009). ArticleCASPubMedPubMed Central Google Scholar
Richardson, P. G. et al. Tanespimycin + bortezomib demonstrates safety, activity, and effective target inhibition in relapsed/refractory myeloma patients: updated results of a phase 1/2 study. 51st Am. Soc. Hematogy Annu. Meet. Abstr. (2009).
Mimnaugh, E. G., Xu, W., Vos, M., Yuan, X. & Neckers, L. Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol. Cancer Res.4, 667–681 (2006). ArticleCASPubMed Google Scholar
Frebel, K. & Wiese, S. Signalling molecules essential for neuronal survival and differentiation. Biochem. Soc. Trans.34, 1287–1290 (2006). ArticleCASPubMed Google Scholar
Fionda, C. et al. Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J. Immunol.183, 4385–4394 (2009). This paper shows that HSP90 inhibitors enhance NK-dependent recognition and lysis of myleoma cells in an HSF1-dependent manner. ArticleCASPubMed Google Scholar
Tse, A. N., Sheikh, T. N., Alan, H., Chou, T. C. & Schwartz, G. K. 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol. Pharmacol.75, 124–133 (2009). ArticleCASPubMed Google Scholar
Arlander, S. J. et al. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J. Biol. Chem.281, 2989–2998 (2006). ArticleCASPubMed Google Scholar
Tse, A. N. et al. A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin. Cancer Res.14, 6704–6711 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hubbard, J. et al. Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Invest. New Drugs 15 Jan 2010 [epub ahead of print].
Hwang, M., Moretti, L. & Lu, B. HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr. Med. Chem.16, 3081–3092 (2009). ArticleCASPubMed Google Scholar
Reikvam, H., Ersvaer, E. & Bruserud, O. Heat shock protein 90 - a potential target in the treatment of human acute myelogenous leukemia. Curr. Cancer Drug Targets9, 761–776 (2009). ArticleCASPubMed Google Scholar
Lancet, J. E. et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022,17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia24, 699–705 (2010). ArticleCASPubMed Google Scholar
Weisberg, E. et al. FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist. Updat.12, 81–89 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shiotsu, Y. et al. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G1 phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood96, 2284–2291 (2000). CASPubMed Google Scholar
Peng, C., Li, D. & Li, S. Heat shock protein 90: a potential therapeutic target in leukemic progenitor and stem cells harboring mutant BCR-ABL resistant to kinase inhibitors. Cell Cycle6, 2227–2231 (2007). ArticleCASPubMed Google Scholar
O'Hare, T., Eide, C. A. & Deininger, M. W. New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin. Investig. Drugs17, 865–878 (2008). ArticleCASPubMed Google Scholar
Peng, C. et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood110, 678–685 (2007). ArticleCASPubMedPubMed Central Google Scholar
Castro, J. E. et al. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood106, 2506–2512 (2005). ArticleCASPubMedPubMed Central Google Scholar
Elfiky, A. et al. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J. Clin. Oncol. Abstr.26, 2503 (2008). Article Google Scholar
Gallegos Ruiz, M. I. et al. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS ONE3, e0001722 (2008). ArticlePubMedCAS Google Scholar
Sequist, L. V. et al. A phase II trial of IPI-504 (retaspimycin hydrochloride), a novel Hsp90 inhibitor, in patients with relapsed and/or refractory stage IIIb or stage IV non-small cell lung cancer (NSCLC) stratified by EGFR mutation status. J. Clin. Oncol. Abstr.27, 8073 (2009). Google Scholar
Shimamura, T. et al. Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res.68, 5827–5838 (2008). ArticleCASPubMedPubMed Central Google Scholar
Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol.23, 4152–4161 (2005). ArticleCASPubMed Google Scholar
Grem, J. L. et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol.23, 1885–1893 (2005). ArticleCASPubMed Google Scholar
Ramanathan, R. K. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor of heat-shock protein 90, in patients with advanced solid tumors. J. Clin. Oncol.28, 1520–1526 (2010). ArticleCASPubMedPubMed Central Google Scholar
Eiseman, J. L. et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol.55, 21–32 (2005). ArticleCASPubMed Google Scholar
Vilenchik, M. et al. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol.11, 787–797 (2004). ArticleCASPubMed Google Scholar
Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature425, 407–410 (2003). ArticleCASPubMed Google Scholar
Kummar, S. et al. Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur. J. Cancer46, 340–347 (2010). ArticleCASPubMed Google Scholar
Dakappagari, N. et al. An investigation into the potential use of serum Hsp70 as a novel tumour biomarker for Hsp90 inhibitors. Biomarkers15, 31–38 (2009). ArticleCAS Google Scholar
Demetri, G. D. et al. Inhibition of the heat shock protein 90 (Hsp90) chaperone with the novel agent IPI-504 to overcome resistance to tyrosine kinase inhibitors (TKIs) in metastatic GIST: updated results of a phase I trial. J. Clin. Oncol. Abstr.25, 10024 (2007). Google Scholar
Smith-Jones, P. M., Solit, D., Afroze, F., Rosen, N. & Larson, S. M. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J. Nucl. Med.47, 793–796 (2006). This paper describes a new non-invasive imaging approach to monitor anti-tumour HSP90 inhibitor activityin vivo. CASPubMed Google Scholar
Oude Munnink, T. H. et al. 89Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur. J. Cancer46, 678–684 (2009). ArticlePubMedCAS Google Scholar
Kramer-Marek, G., Kiesewetter, D. O. & Capala, J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and 18F-labeled affibody molecules. J. Nucl. Med.50, 1131–1139 (2009). ArticleCASPubMed Google Scholar
Holland, J. P. et al. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS ONE5, e8859 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Le, H. C. et al. Proton MRS detects metabolic changes in hormone sensitive and resistant human prostate cancer models CWR22 and CWR22r. Magn. Reson. Med.62, 1112–1119 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chung, Y. L. et al. Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino, 17-demethoxygeldanamycin (17AAG) in human colon cancer models. J. Natl Cancer Inst.95, 1624–1633 (2003). ArticleCASPubMed Google Scholar
Liu, D. et al. Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br. J. Cancer87, 783–789 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kelland, L. R., Sharp, S. Y., Rogers, P. M., Myers, T. G. & Workman, P. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl Cancer Inst.91, 1940–1949 (1999). ArticleCASPubMed Google Scholar
Guo, W. et al. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res.65, 10006–10015 (2005). ArticleCASPubMed Google Scholar
Gaspar, N. et al. Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res.69, 1966–1975 (2009). ArticleCASPubMedPubMed Central Google Scholar
Erlichman, C. Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opin. Investig. Drugs18, 861–868 (2009). ArticleCASPubMed Google Scholar
McCollum, A. K., Teneyck, C. J., Sauer, B. M., Toft, D. O. & Erlichman, C. Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res.66, 10967–10975 (2006). ArticleCASPubMed Google Scholar
Powers, M. V., Clarke, P. A. & Workman, P. Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell14, 250–262 (2008). ArticleCASPubMed Google Scholar
Evans, C. G., Chang, L. & Gestwicki, J. E. Heat shock protein 70 (Hsp70) as an emerging drug target. J. Med. Chem. 24 Mar 2010 (doi:10.1021/jm100054f).
Powers, M. V. et al. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle9, 1542–1550 (2010). ArticleCASPubMed Google Scholar
Hadchity, E. et al. Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Mol. Ther.17, 1387–1394 (2009). ArticleCASPubMedPubMed Central Google Scholar
Roe, S. M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem.42, 260–266 (1999). ArticleCASPubMed Google Scholar
Prodromou, C. et al. Structural basis of the radicicol resistance displayed by a fungal hsp90. ACS Chem. Biol.4, 289–297 (2009). ArticleCASPubMed Google Scholar
Matthews, S. B. et al. Characterization of a novel novobiocin analogue as a putative C-terminal inhibitor of heat shock protein 90 in prostate cancer cells. Prostate70, 27–36 (2010). ArticleCASPubMed Google Scholar
Shelton, S. N. et al. KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells. Mol. Pharmacol.76, 1314–1322 (2009). References 148 and 149 describe new C-terminal HSP90 inhibitors with potent anticancer activity. ArticleCASPubMedPubMed Central Google Scholar
Radanyi, C. et al. Antiproliferative and apoptotic activities of tosylcyclonovobiocic acids as potent heat shock protein 90 inhibitors in human cancer cells. Cancer Lett.274, 88–94 (2009). ArticleCASPubMed Google Scholar
Zhang, T. et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol. Cancer Ther.7, 162–170 (2008). ArticleCASPubMed Google Scholar
Sreeramulu, S., Gande, S. L., Gobel, M. & Schwalbe, H. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew. Chem. Int. Ed. Engl.48, 5853–5855 (2009). ArticleCASPubMed Google Scholar
Chakraborty, A. et al. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc. Natl Acad. Sci. USA105, 1134–1139 (2008). ArticleCASPubMedPubMed Central Google Scholar
Voss, A. K., Thomas, T. & Gruss, P. Mice lacking HSP90β fail to develop a placental labyrinth. Development127, 1–11 (2000). CASPubMed Google Scholar
Dollins, D. E., Warren, J. J., Immormino, R. M. & Gewirth, D. T. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol. Cell28, 41–56 (2007). ArticleCASPubMedPubMed Central Google Scholar
Frey, S., Leskovar, A., Reinstein, J. & Buchner, J. The ATPase cycle of the endoplasmic chaperone Grp94. J. Biol. Chem.282, 35612–35620 (2007). ArticleCASPubMed Google Scholar
Leskovar, A., Wegele, H., Werbeck, N. D., Buchner, J. & Reinstein, J. The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J. Biol. Chem.283, 11677–11688 (2008). ArticleCASPubMed Google Scholar
Immormino, R. M. et al. Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J. Mol. Biol.388, 1033–1042 (2009). ArticleCASPubMedPubMed Central Google Scholar
Felts, S. J. et al. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem.275, 3305–3312 (2000). ArticleCASPubMed Google Scholar
Hua, G., Zhang, Q. & Fan, Z. Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J. Biol. Chem.282, 20553–20560 (2007). ArticleCASPubMed Google Scholar
Kang, B. H. et al. Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J. Clin. Invest.119, 454–464 (2009). ArticleCASPubMedPubMed Central Google Scholar
Leav, I. et al. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am. J. Pathol.176, 393–401 (2009). ArticlePubMedCAS Google Scholar
Pridgeon, J. W., Olzmann, J. A., Chin, L. S. & Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol.5, e172 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Sidera, K. & Patsavoudi, E. Extracellular HSP90: conquering the cell surface. Cell Cycle7, 1564–1568 (2008). ArticleCASPubMed Google Scholar
Eustace, B. K. et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nature Cell Biol.6, 507–514 (2004). This paper describes an important role for secreted HSP90 in cancer cell motility and invasion. ArticleCASPubMed Google Scholar
Becker, B. et al. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol.13, 27–32 (2004). ArticleCASPubMed Google Scholar
Tsutsumi, S. et al. A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene27, 2478–2487 (2008). ArticleCASPubMed Google Scholar
Cheng, C. F. et al. Transforming growth factor alpha (TGFα)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFβ-rich environment during wound healing. Mol. Cell. Biol.28, 3344–3358 (2008). ArticleCASPubMedPubMed Central Google Scholar
Li, W. et al. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J.26, 1221–1233 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tsutsumi, S. et al. Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nature Struct. Mol. Biol.16, 1141–1147 (2009). ArticleCAS Google Scholar
Sidera, K., Gaitanou, M., Stellas, D., Matsas, R. & Patsavoudi, E. A critical role for HSP90 in cancer cell invasion involves interaction with the extracellular domain of HER-2. J. Biol. Chem.283, 2031–2041 (2008). ArticleCASPubMed Google Scholar
Annamalai, B., Liu, X., Gopal, U. & Isaacs, J. S. Hsp90 is an essential regulator of EphA2 receptor stability and signaling: implications for cancer cell migration and metastasis. Mol. Cancer Res.7, 1021–1032 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kawabe, M. et al. Heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin enhances EphA2+ tumor cell recognition by specific CD8+ T cells. Cancer Res.69, 6995–7003 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wesa, A. K. et al. Enhancement in specific CD8+ T cell recognition of EphA2+ tumors in vitro and in vivo after treatment with ligand agonists. J. Immunol.181, 7721–7727 (2008). ArticleCASPubMed Google Scholar
Stuehler, C. et al. Selective depletion of alloreactive T cells by targeted therapy of heat shock protein 90: a novel strategy for control of graft-versus-host disease. Blood114, 2829–2836 (2009). ArticleCASPubMed Google Scholar