The nuclear envelope environment and its cancer connections (original) (raw)
Dey, P. Cancer nucleus: morphology and beyond. Diagn. Cytopathol.38, 382–390 (2010). PubMed Google Scholar
True, L. D. & Jordan, C. D. The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype. J. Cell. Biochem.104, 1994–2003 (2008). ArticleCASPubMed Google Scholar
Chatel, G. & Fahrenkrog, B. Nucleoporins: Leaving the nuclear pore complex for a successful mitosis. Cell Signal 13 Jun 2011 (doi:10.1016/j.cellsig.2011.05.023).
Dauer, W. T. & Worman, H. J. The nuclear envelope as a signaling node in development and disease. Dev. Cell17, 626–638 (2009). ArticleCASPubMed Google Scholar
Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol.23, 55–64 (2011). ArticleCASPubMed Google Scholar
Olins, A. L. et al. The LINC-less granulocyte nucleus. Eur. J. Cell Biol.88, 203–214 (2009). ArticleCASPubMed Google Scholar
Starr, D. A. & Fridolfsson, H. N. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol.26, 421–444 (2010). ArticleCASPubMedPubMed Central Google Scholar
Luxton, G. W. G., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science329, 956–959 (2010). ArticleCASPubMedPubMed Central Google Scholar
Capo-chichi, C. D., Cai, K. Q., Testa, J. R., Godwin, A. K. & Xu, X.-X. Loss of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol. Cell. Biol.29, 4766–4777 (2009). ArticleCASPubMedPubMed Central Google Scholar
Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer9, 108–122 (2009). ArticleCASPubMed Google Scholar
Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem.286, 26743–26753 (2011). ArticleCASPubMedPubMed Central Google Scholar
Willis, N. D. et al. Lamin A/C is a risk biomarker in colorectal cancer. PLoS ONE3, e2988 (2008). The authors found that lamin A expression in colorectal cancer tissue is predictive of poor prognosis, and uncovered a role of lamin A in enhancing cell motility and invasiveness. ArticlePubMedPubMed CentralCAS Google Scholar
Zhou, L. & Panté, N. The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett.584, 3013–3020 (2010). ArticleCASPubMed Google Scholar
Joseph, J. & Dasso, M. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett.582, 190–196 (2008). ArticleCASPubMed Google Scholar
Murawala, P., Tripathi, M. M., Vyas, P., Salunke, A. & Joseph, J. Nup358 interacts with APC and plays a role in cell polarization. J. Cell. Sci.122, 3113–3122 (2009). ArticleCASPubMed Google Scholar
Collin, L., Schlessinger, K. & Hall, A. APC nuclear membrane association and microtubule polarity. Biol. Cell100, 243–252 (2008). ArticleCASPubMed Google Scholar
Hubert, T., Vandekerckhove, J. & Gettemans, J. Exo70-mediated recruitment of nucleoporin Nup62 at the leading edge of migrating cells is required for cell migration. Traffic10, 1257–1271 (2009). ArticleCASPubMed Google Scholar
Gloerich, M. et al. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. J. Cell Biol.193, 1009–1020 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, C. et al. The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol. Cell. Biol.30, 3956–3969 (2010). ArticleCASPubMedPubMed Central Google Scholar
Susaki, E. & Nakayama, K. I. Multiple mechanisms for p27(Kip1) translocation and degradation. Cell Cycle6, 3015–3020 (2007). ArticleCASPubMed Google Scholar
Gavet, O. & Pines, J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol.189, 247–259 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chakraborty, P. et al. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev. Cell15, 657–667 (2008). ArticleCASPubMedPubMed Central Google Scholar
Palancade, B. & Doye, V. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol.18, 174–183 (2008). ArticleCASPubMed Google Scholar
Xu, Y. et al. SUMO-specific protease 1 regulates the in vitro and in vivo growth of colon cancer cells with the upregulated expression of CDK inhibitors. Cancer Lett.309, 78–84 (2011). ArticleCASPubMed Google Scholar
Dorner, D., Gotzmann, J. & Foisner, R. Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS J.274, 1362–1373 (2007). ArticleCASPubMed Google Scholar
Burke, B. & Ellenberg, J. Remodelling the walls of the nucleus. Nature Rev. Mol. Cell Biol.3, 487–497 (2002). ArticleCAS Google Scholar
Mackay, D. R., Makise, M. & Ullman, K. S. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol.191, 923–931 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dar, A. A., Goff, L. W., Majid, S., Berlin, J. & El-Rifai, W. Aurora kinase inhibitors - rising stars in cancer therapeutics? Mol.Cancer Ther.9, 268–278 (2010). ArticleCASPubMedPubMed Central Google Scholar
Verstraeten, V. L. R. M. et al. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc. Natl Acad. Sci. USA108, 4997–5002 (2011). This study reports how a striking nuclear phenotype that results from inhibition of FNT is tied to the disruption of centrosome separation and a role for lamin B1, pointing to a novel mechanism that contributes to downstream consequences of this class of chemotherapy. ArticleCASPubMedPubMed Central Google Scholar
Sebti, S. M. & Der, C. J. Opinion: Searching for the elusive targets of farnesyltransferase inhibitors. Nature Rev. Cancer3, 945–951 (2003). ArticleCAS Google Scholar
Bolhy, S. et al. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J. Cell Biol.192, 855–871 (2011). ArticleCASPubMedPubMed Central Google Scholar
Splinter, D. et al. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol.8, e1000350 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Silkworth, W. T., Nardi, I. K., Paul, R., Mogilner, A. & Cimini, D. Timing of centrosome separation is important for accurate chromosome segregation. Mol. Biol. Cell 30 Nov 2011 (doi:10.1091/mbc.E11-02-0095). The authors observe that when centrosomes do not fully separate prior to nuclear envelope breakdown, there is a greater likelihood of defective kinetochore attachment to mitotic spindles and aberrant chromosome segregation.
Dawlaty, M. M. et al. Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIα. Cell133, 103–115 (2008). This study reports a tumour-suppressive function of NUP358 that is attributed to the regulation of topoisomerase IIα sumoylation. ArticleCASPubMedPubMed Central Google Scholar
Zhang, X.-D. et al. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell29, 729–741 (2008). ArticleCASPubMedPubMed Central Google Scholar
Klein, U. R., Haindl, M., Nigg, E. A. & Muller, S. RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin. Mol. Biol. Cell20, 410–418 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ban, R., Nishida, T. & Urano, T. Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes Cells16, 652–669 (2011). ArticleCASPubMed Google Scholar
Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem.277, 19961–19966 (2002). ArticleCASPubMed Google Scholar
Ryu, H., Furuta, M., Kirkpatrick, D., Gygi, S. P. & Azuma, Y. PIASy-dependent SUMOylation regulates DNA topoisomerase IIα activity. J. Cell Biol.191, 783–794 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gardner, L., Malik, R., Shamizu, Y., Mullins, N. & Elshamy, W. M. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res.13, R53 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jacques, C. et al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab.90, 2314–2320 (2005). ArticleCASPubMed Google Scholar
Cheng, J., Bawa, T., Lee, P., Gong, L. & Yeh, E. T. H. Role of desumoylation in the development of prostate cancer. Neoplasia8, 667–676 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gómez-Baldó, L. et al. TACC3-TSC2 maintains nuclear envelope structure and controls cell division. Cell Cycle9, 1143–1155 (2010). ArticlePubMed Google Scholar
Lee, S. H., Sterling, H., Burlingame, A. & McCormick, F. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev.22, 2926–2931 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer10, 102–115 (2010). ArticleCAS Google Scholar
Cross, M. K. & Powers, M. A. Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK. Mol. Biol. Cell22, 661–672 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jeganathan, K. B., Baker, D. J. & van Deursen, J. M. Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle5, 366–370 (2006). ArticleCASPubMed Google Scholar
Jeganathan, K. B., Malureanu, L. & van Deursen, J. M. The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature438, 1036–1039 (2005). ArticleCASPubMed Google Scholar
Tsai, M.-Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science311, 1887–1893 (2006). ArticleCASPubMed Google Scholar
Civelekoglu-Scholey, G., Tao, L., Brust-Mascher, I., Wollman, R. & Scholey, J. M. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. J. Cell Biol.188, 49–68 (2010). ArticleCASPubMedPubMed Central Google Scholar
Korfali, N. et al. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal. PLoS ONE6, e18762 (2011). The results in this paper highlight the importance of the nuclear envelope as a source for cell cycle regulatory proteins, many of which have not yet been characterized. ArticleCASPubMedPubMed Central Google Scholar
Draviam, V. M. et al. A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nat. Cell Biol.9, 556–564 (2007). ArticleCASPubMed Google Scholar
Ruault, M., Dubarry, M. & Taddei, A. Re-positioning genes to the nuclear envelope in mammalian cells: impact on transcription. Trends Genet.24, 574–581 (2008). ArticleCASPubMed Google Scholar
Batrakou, D. G., Kerr, A. R. W. & Schirmer, E. C. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J. Proteomics72, 56–70 (2009). ArticleCASPubMed Google Scholar
Andrés, V. & González, J. M. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol.187, 945–957 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Malhas, A., Saunders, N. J. & Vaux, D. J. The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle9, 531–539 (2010). This study underscores the effect of the nuclear lamina on regulating genes with key roles in cancer, including miRNAs. ArticleCASPubMed Google Scholar
Bandrés, E. et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer5, 29 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Valastyan, S., Chang, A., Benaich, N., Reinhardt, F. & Weinberg, R. A. Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev.25, 646–659 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xu, L., Kang, Y., Cöl, S. & Massagué, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell10, 271–282 (2002). ArticleCASPubMed Google Scholar
Xylourgidis, N., Roth, P., Sabri, N., Tsarouhas, V. & Samakovlis, C. The nucleoporin Nup214 sequesters CRM1 at the nuclear rim and modulates NFkappaB activation in Drosophila. J. Cell. Sci.119, 4409–4419 (2006). ArticleCASPubMed Google Scholar
Takahashi, N. et al. Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-kappaB. Biochem. Biophys. Res. Commun.374, 424–430 (2008). ArticleCASPubMed Google Scholar
Vaquerizas, J. M. et al. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet.6, e1000846 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell140, 360–371 (2010). ArticleCASPubMed Google Scholar
Brown, C. R., Kennedy, C. J., Delmar, V. A., Forbes, D. J. & Silver, P. A. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev.22, 627–639 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kehat, I., Accornero, F., Aronow, B. J. & Molkentin, J. D. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J. Cell Biol.193, 21–29 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dickinson, M., Johnstone, R. W. & Prince, H. M. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest. New Drugs28 (Suppl. 1), 3–20 (2010). ArticleCASPubMed Central Google Scholar
Arib, G. & Akhtar, A. Multiple facets of nuclear periphery in gene expression control. Curr. Opin. Cell Biol.23, 346–353 (2011). ArticleCASPubMed Google Scholar
Kind, J. & van Steensel, B. Genome-nuclear lamina interactions and gene regulation. Curr. Opin. Cell Biol.22, 320–325 (2010). ArticleCASPubMed Google Scholar
Shimi, T. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev.22, 3409–3421 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mewborn, S. K. et al. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE5, e14342 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ottaviani, A., Schluth-Bolard, C., Gilson, E. & Magdinier, F. D4Z4 as a prototype of CTCF and lamins-dependent insulator in human cells. Nucleus1, 30–36 (2010). ArticlePubMedPubMed Central Google Scholar
Kalverda, B. & Fornerod, M. Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle9, 4812–4817 (2010). ArticleCASPubMed Google Scholar
Helfand, B. T. et al. Chromosomal regions associated with prostate cancer risk localize to lamin B deficient microdomains and exhibit reduced gene transcription. J. Pathol. 25 Oct 2011 (doi:10.1002/path.3033). The authors track the distribution of lamin proteins in prostate cancer and find that the frequency of nuclear blebs deficient in B-type lamins corresponds to the severity of Gleason grade.
Maraldi, N. M., Capanni, C., Cenni, V., Fini, M. & Lattanzi, G. Laminopathies and lamin-associated signaling pathways. J. Cell. Biochem.112, 979–992 (2011). ArticleCASPubMed Google Scholar
Neumann, S. et al. Nesprin-2 interacts with α-catenin and regulates Wnt signaling at the nuclear envelope. J. Biol. Chem.285, 34932–34938 (2010). ArticleCASPubMedPubMed Central Google Scholar
Markiewicz, E. et al. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J.25, 3275–3285 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hernandez, L. et al. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev. Cell19, 413–425 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shitashige, M. et al. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology134, 1961–1971 (2008). ArticleCASPubMed Google Scholar
Carmo-fonseca, M. Testosterone-induced changes in nuclear pore complex number of prostatic nuclei from castrated rats. J. Ultrastruct. Res.80, 243–251 (1982). ArticleCASPubMed Google Scholar
Ortiz, H. E. & Cavicchia, J. C. Androgen-induced changes in nuclear pore number and in tight junctions in rat seminal vesicle epithelium. Anat. Rec.226, 129–134 (1990). ArticleCASPubMed Google Scholar
Maul, G. G. et al. Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J. Cell Biol.55, 433–447 (1972). ArticleCASPubMedPubMed Central Google Scholar
Maeshima, K. et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nature Struct. Mol. Biol.17, 1065–1071 (2010). ArticleCAS Google Scholar
Richard, M. N., Deniset, J. F., Kneesh, A. L., Blackwood, D. & Pierce, G. N. Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J. Biol. Chem.282, 23081–23088 (2007). ArticleCASPubMed Google Scholar
Kosako, H. et al. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nature Struct. Mol. Biol.16, 1026–1035 (2009). ArticleCAS Google Scholar
Vomastek, T. et al. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol. Cell. Biol.28, 6954–6966 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yazicioglu, M. N. et al. Mutations in ERK2 binding sites affect nuclear entry. J. Biol. Chem.282, 28759–28767 (2007). ArticleCASPubMed Google Scholar
Smith, E. R. et al. Nuclear entry of activated MAPK is restricted in primary ovarian and mammary epithelial cells. PLoS ONE5, e9295 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Huber, M. D., Guan, T. & Gerace, L. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol. Cell. Biol.29, 5718–5728 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wittmann, M. et al. Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J. Neurosci.29, 14687–14700 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rodríguez, J. et al. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. J. Cell Biol.191, 967–979 (2010). This study reports that ERK1–ERK2 can displace RB from lamin A, independently of ERK1–ERK2 kinase activity, to promote cell cycle entry. ArticlePubMedPubMed CentralCAS Google Scholar
Collado-Hilly, M., Shirvani, H., Jaillard, D. & Mauger, J.-P. Differential redistribution of Ca2+-handling proteins during polarisation of MDCK cells: Effects on Ca2+ signalling. Cell Calcium48, 215–224 (2010). ArticleCASPubMed Google Scholar
Gonzalez-Suarez, I. & Gonzalo, S. Nurturing the genome: A-type lamins preserve genomic stability. Nucleus1, 129–135 (2010). PubMed Google Scholar
Manju, K., Muralikrishna, B. & Parnaik, V. K. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J. Cell. Sci.119, 2704–2714 (2006). ArticleCASPubMed Google Scholar
Johnson, B. R. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc. Natl Acad. Sci. USA101, 9677–9682 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nitta, R. T., Jameson, S. A., Kudlow, B. A., Conlan, L. A. & Kennedy, B. K. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol. Cell. Biol.26, 5360–5372 (2006). ArticleCASPubMedPubMed Central Google Scholar
Han, X. et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat. Cell Biol.10, 1333–1340 (2008). ArticleCASPubMed Google Scholar
Gonzalez-Suarez, I. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J.28, 2414–2427 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science322, 597–602 (2008). ArticleCASPubMedPubMed Central Google Scholar
Smolka, M. B., Albuquerque, C. P., Chen, S-hong & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA104, 10364–10369 (2007). ArticleCASPubMedPubMed Central Google Scholar
Davuluri, G. et al. Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet.4, e1000240 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Gao, N. et al. The nuclear pore complex protein Elys is required for genome stability in mouse intestinal epithelial progenitor cells. Gastroenterology140, 1547–1555 (2011). This paper shows that removal of the mammalian nucleoporin ELYS from the developing intestinal epithelium results in activation of a DNA damage response without noticeably affecting the presence of nuclear pores. ArticleCASPubMed Google Scholar
Saitoh, H., Pizzi, M. D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem.277, 4755–4763 (2002). ArticleCASPubMed Google Scholar
Moudry, P. et al. Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death Differ. 11 Nov 2011 (doi: 10.1038/cdd.2011.150). This study reports the results of a screen that involved knocking down expression of more than 1,000 genes to identify factors required for 53BP1 recruitment to ionizing radiation-induced DNA damage foci.
Kinoshita, Y., Kalir, T., Rahaman, J., Dottino, P. & Kohtz, D. S. Alterations in nuclear pore architecture allow cancer cell entry into or exit from drug-resistant dormancy. Am. J. Pathol.180, 375–389 (2012). ArticleCASPubMedPubMed Central Google Scholar
Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89, 10114–10118 (1992). ArticleCASPubMedPubMed Central Google Scholar
Huang, S., Risques, R. A., Martin, G. M., Rabinovitch, P. S. & Oshima, J. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp. Cell Res.314, 82–91 (2008). ArticleCASPubMed Google Scholar
Raz, V. et al. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J. Cell. Sci.121, 4018–4028 (2008). ArticleCASPubMed Google Scholar
Dechat, T. et al. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J. Cell. Sci.117, 6117–6128 (2004). ArticleCASPubMed Google Scholar
Lisby, M., Teixeira, T., Gilson, E. & Géli, V. The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus1, 158–161 (2010). ArticlePubMedPubMed Central Google Scholar
Ferreira, H. C. et al. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat. Cell Biol.13, 867–874 (2011). ArticleCASPubMed Google Scholar
Broers, J. L. et al. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol.143, 211–220 (1993). CASPubMedPubMed Central Google Scholar
Capo-chichi, C. D. et al. Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Med.9, 28 (2011). ArticleCASPubMedPubMed Central Google Scholar
Somech, R. et al. Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann. Hematol.86, 393–401 (2007). ArticleCASPubMed Google Scholar
Schneider, J. et al. Cross-reactivity between Candida albicans and human ovarian carcinoma as revealed by monoclonal antibodies PA10F and C6. Br. J. Cancer77, 1015–1020 (1998). ArticleCASPubMedPubMed Central Google Scholar
Martínez, N., Alonso, A., Moragues, M. D., Pontón, J. & Schneider, J. The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res.59, 5408–5411 (1999). PubMed Google Scholar
Gould, V. E. et al. Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis. Hum. Pathol.33, 536–544 (2002). ArticleCASPubMed Google Scholar
Agudo, D. et al. Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int. J. Cancer109, 717–720 (2004). ArticleCASPubMed Google Scholar
Knoess, M. et al. Nucleoporin 88 expression in hepatitis B and C virus-related liver diseases. World J. Gastroenterol.12, 5870–5874 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Z.-Y. et al. Nup88 expression in normal mucosa, adenoma, primary adenocarcinoma and lymph node metastasis in the colorectum. Tumour Biol.28, 93–99 (2007). ArticlePubMedCAS Google Scholar
Brustmann, H. & Hager, M. Nucleoporin 88 expression in normal and neoplastic squamous epithelia of the uterine cervix. Ann. Diagn. Pathol.13, 303–307 (2009). ArticlePubMed Google Scholar
Schneider, J., Martínez-Arribas, F. & Torrejón, R. Nup88 expression is associated with myometrial invasion in endometrial carcinoma. Int. J. Gynecol. Cancer20, 804–808 (2010). ArticlePubMed Google Scholar
Alfonso, P., Cañamero, M., Fernández-Carbonié, F., Núñez, A. & Casal, J. I. Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J. Proteome Res.7, 4247–4255 (2008). ArticleCASPubMed Google Scholar
Skvortsov, S. et al. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome Res.10, 259–268 (2011). ArticleCASPubMed Google Scholar
Lim, S. O. et al. Proteome analysis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun.291, 1031–1037 (2002). ArticleCASPubMed Google Scholar
Sun, S., Xu, M. Z., Poon, R. T., Day, P. J. & Luk, J. M. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J. Proteome Res.9, 70–78 (2010). ArticleCASPubMed Google Scholar
Xie, X. et al. A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis31, 1842–1852 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ballester, M. et al. Disruption of nuclear organization during the initial phase of African swine fever virus infection. J. Virol.85, 8263–8269 (2011). ArticleCASPubMedPubMed Central Google Scholar
Foster, C. R., Przyborski, S. A., Wilson, R. G. & Hutchison, C. J. Lamins as cancer biomarkers. Biochem. Soc. Trans.38, 297–300 (2010). ArticleCASPubMed Google Scholar
Wu, Z. et al. Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J. Exp. Clin. Cancer Res.28, 8 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Agrelo, R. et al. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J. Clin. Oncol.23, 3940–3947 (2005). ArticleCASPubMed Google Scholar
Kuramitsu, Y. et al. Proteomic analysis for nuclear proteins related to tumour malignant progression: a comparative proteomic study between malignant progressive cells and regressive cells. Anticancer Res.30, 2093–2099 (2010). CASPubMed Google Scholar
Roth, U. et al. Differential expression proteomics of human colorectal cancer based on a syngeneic cellular model for the progression of adenoma to carcinoma. Proteomics10, 194–202 (2010). ArticleCASPubMed Google Scholar
Wang, Y. et al. Differential protein mapping of ovarian serous adenocarcinomas: identification of potential markers for distinct tumor stage. J. Proteome Res.8, 1452–1463 (2009). ArticleCASPubMedPubMed Central Google Scholar
Emterling, A. et al. Clinicopathological significance of Nup88 expression in patients with colorectal cancer. Oncology64, 361–369 (2003). ArticlePubMed Google Scholar
De Keersmaecker, K. et al. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol. Cell31, 134–142 (2008). The translocation and resulting fusion protein NUP214–ABL, found in ∼6% of patients with T cell acute lymphoblastic leukaemia, is shown to require localization to the NPC for its transformation activity. ArticleCASPubMed Google Scholar
Takeda, A., Sarma, N. J., Abdul-Nabi, A. M. & Yaseen, N. R. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins. J. Biol. Chem.285, 16248–16257 (2010). ArticleCASPubMedPubMed Central Google Scholar
Garçon, L. et al. DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification. Leukemia19, 1338–1344 (2005). ArticlePubMedCAS Google Scholar
Belt, E. J. T. et al. Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur. J. Cancer47, 1837–1845 (2011). This study combines the analysis of A-type lamins in colon tumours with two other parameters that have been shown to have prognostic value, pointing to the potential of combining prognostic indictors for more informative stratification of patients. ArticleCASPubMed Google Scholar
Bussolati, G. Proper detection of the nuclear shape: ways and significance. Rom J. Morphol. Embryol.49, 435–439 (2008). CASPubMed Google Scholar
Moeder, C. B., Giltnane, J. M., Moulis, S. P. & Rimm, D. L. Quantitative, fluorescence-based in-situ assessment of protein expression. Methods Mol. Biol.520, 163–175 (2009). ArticleCASPubMed Google Scholar
Johannessen, J. V., Sobrinho-Simões, M., Finseth, I. & Pilström, L. Papillary carcinomas of the thyroid have pore-deficient nuclei. Int. J. Cancer30, 409–411 (1982). ArticleCASPubMed Google Scholar
Czerniak, B., Koss, L. G. & Sherman, A. Nuclear pores and DNA ploidy in human bladder carcinomas. Cancer Res.44, 3752–3756 (1984). CASPubMed Google Scholar
Sugie, S., Yoshimi, N., Tanaka, T., Mori, H. & Williams, G. M. Alterations of nuclear pores in preneoplastic and neoplastic rat liver lesions induced by 2-acetylaminofluorene. Carcinogenesis15, 95–98 (1994). ArticleCASPubMed Google Scholar
Lewin, J. M., Lwaleed, B. A., Cooper, A. J. & Birch, B. R. The direct effect of nuclear pores on nuclear chemotherapeutic concentration in multidrug resistant bladder cancer: the nuclear sparing phenomenon. J. Urol.177, 1526–1530 (2007). ArticleCASPubMed Google Scholar
Webster, M., Witkin, K. L. & Cohen-Fix, O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell. Sci.122, 1477–1486 (2009). ArticleCASPubMedPubMed Central Google Scholar
Politi, K. & Pao, W. How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol.29, 2273–2281 (2011). ArticleCASPubMedPubMed Central Google Scholar
Goldberg, M. W., Huttenlauch, I., Hutchison, C. J. & Stick, R. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell. Sci.121, 215–225 (2008). ArticleCASPubMed Google Scholar
Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol.147, 913–920 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ralle, T., Grund, C., Franke, W. W. & Stick, R. Intranuclear membrane structure formations by CaaX-containing nuclear proteins. J. Cell. Sci.117, 6095–6104 (2004). ArticleCASPubMed Google Scholar
Polychronidou, M., Hellwig, A. & Grosshans, J. Farnesylated nuclear proteins Kugelkern and lamin Dm0 affect nuclear morphology by directly interacting with the nuclear membrane. Mol. Biol. Cell21, 3409–3420 (2010). ArticleCASPubMedPubMed Central Google Scholar
Simon, D. N., Zastrow, M. S. & Wilson, K. L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus1, 264–272 (2010). ArticlePubMedPubMed Central Google Scholar
Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol.2, E231 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Antonin, W., Ungricht, R. & Kutay, U. Traversing the NPC along the pore membrane: targeting of membrane proteins to the INM. Nucleus2, 87–91 (2011). ArticlePubMedPubMed Central Google Scholar
Hawryluk-Gara, L. A., Shibuya, E. K. & Wozniak, R. W. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell16, 2382–2394 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lussi, Y. C., Hügi, I., Laurell, E., Kutay, U. & Fahrenkrog, B. The nucleoporin Nup88 is interacting with nuclear lamin A. Mol. Biol. Cell22, 1080–1090 (2011). ArticleCASPubMedPubMed Central Google Scholar
Smythe, C., Jenkins, H. E. & Hutchison, C. J. Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J.19, 3918–3931 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mackay, D. R., Elgort, S. W. & Ullman, K. S. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol. Biol. Cell20, 1652–1660 (2009). ArticleCASPubMedPubMed Central Google Scholar
D'Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell136, 284–295 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tang, Y., Chen, Y., Jiang, H. & Nie, D. Promotion of tumor development in prostate cancer by progerin. Cancer Cell. Int.10, 47 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Mason, M. J., Fan, G., Plath, K., Zhou, Q. & Horvath, S. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics10, 327 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Lupu, F., Alves, A., Anderson, K., Doye, V. & Lacy, E. Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Dev. Cell14, 831–842 (2008). ArticleCASPubMedPubMed Central Google Scholar
Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol.10, 452–459 (2008). ArticleCASPubMedPubMed Central Google Scholar
Doucet, C. M. & Hetzer, M. W. Nuclear pore biogenesis into an intact nuclear envelope. Chromosoma119, 469–477 (2010). ArticlePubMed Google Scholar
Malhas, A., Goulbourne, C. & Vaux, D. J. The nucleoplasmic reticulum: form and function. Trends Cell Biol.21, 362–373 (2011). ArticleCASPubMed Google Scholar
Tilli, C. M. L. J., Ramaekers, F. C. S., Broers, J. L. V., Hutchison, C. J. & Neumann, H. A. M. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br. J. Dermatol.148, 102–109 (2003). ArticleCASPubMed Google Scholar
Bengtsson, S. et al. Large-scale proteomics analysis of human ovarian cancer for biomarkers. J. Proteome Res.6, 1440–1450 (2007). ArticleCASPubMed Google Scholar
Coradeghini, R. et al. Differential expression of nuclear lamins in normal and cancerous prostate tissues. Oncol. Rep.15, 609–613 (2006). CASPubMed Google Scholar
Doherty, J. A. et al. ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an ovarian cancer association consortium study. Cancer Epidemiol. Biomarkers Prev.19, 245–250 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). ArticleCASPubMed Google Scholar
Zhao, Z.-R. et al. Increased serum level of Nup88 protein is associated with the development of colorectal cancer. Med. Oncol. 24 Aug 2011 (doi:10.1007/s12032-011-0047-1).