The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast (original) (raw)
References
Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol.12, 2076–2089 (2002). ArticleCASPubMed Google Scholar
Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell75, 543–555 (1993). ArticleCASPubMed Google Scholar
Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev.23, 928–938 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bupp, J. M., Martin, A. E., Stensrud, E. S. & Jaspersen, S. L. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol.179, 845–854 (2007). ArticleCASPubMedPubMed Central Google Scholar
Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J.23, 1301–1312 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol.167, 605–611 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev.20, 966–976 (2006). ArticleCASPubMedPubMed Central Google Scholar
Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature373, 78–81 (1995). ArticleCASPubMed Google Scholar
Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell119, 955–967 (2004). ArticleCASPubMed Google Scholar
Mondoux, M. A., Scaife, J. G. & Zakian, V. A. Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres. Genetics177, 2019–2029 (2007). ArticleCASPubMedPubMed Central Google Scholar
Taddei, A. & Gasser, S. M. Multiple pathways for telomere tethering: functional implications of subnuclear position for heterochromatin formation. Biochim. Biophys. Acta1677, 120–128 (2004). ArticleCASPubMed Google Scholar
Andrulis, E. D. et al. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol.22, 8292–8301 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ansari, A. & Gartenberg, M. R. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol. Cell. Biol.17, 7061–7068 (1997). ArticleCASPubMedPubMed Central Google Scholar
Denison, C. et al. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics4, 246–254 (2005). ArticleCASPubMed Google Scholar
Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem.280, 4102–4110 (2005). ArticleCASPubMed Google Scholar
Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. & Yates, J. R. III Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem.279, 45662–45668 (2004). ArticleCASPubMed Google Scholar
Roy, R., Meier, B., McAinsh, A. D., Feldmann, H. M. & Jackson, S. P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p–Sir4p interaction involved in telomeric silencing. J. Biol. Chem.279, 86–94 (2004). ArticleCASPubMed Google Scholar
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA102, 4777–4782 (2005). ArticleCASPubMedPubMed Central Google Scholar
Carter, S. & Vousden, K. H. p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle7, 2519–2528 (2008). ArticleCASPubMed Google Scholar
Zhu, S., Zhang, H. & Matunis, M. J. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Exp. Cell Res.312, 1042–1049 (2006). ArticleCASPubMed Google Scholar
Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J.16, 5509–5519 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. L. et al. Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics177, 17–30 (2007). ArticleCASPubMedPubMed Central Google Scholar
Boule, J. B., Vega, L. R. & Zakian, V. A. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature438, 57–61 (2005). ArticleCASPubMed Google Scholar
Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell117, 323–335 (2004). ArticleCASPubMed Google Scholar
Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol.10, 487–490 (2000). ArticleCASPubMed Google Scholar
Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell72, 51–60 (1993). ArticleCASPubMed Google Scholar
Xhemalce, B. et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl Acad. Sci USA104, 893–898 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ungar, L. et al. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res.37, 3840–3849 (2009). ArticleCASPubMedPubMed Central Google Scholar
Panse, V. G., Kuster, B., Gerstberger, T. & Hurt, E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat. Cell Biol.5, 21–27 (2003). ArticleCASPubMed Google Scholar
Hiraga, S., Botsios, S. & Donaldson, A. D. Histone H3 lysine 56 acetylationby Rtt109 is crucial for chromosome positioning. J. Cell Biol.183, 641–651 (2008). ArticleCASPubMedPubMed Central Google Scholar
Potts, P. R. & Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol.14, 581–590 (2007). ArticleCASPubMed Google Scholar
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science322, 597–602 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell33, 335–343 (2009). ArticleCASPubMed Google Scholar
Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature462, 935–939 (2009). ArticleCASPubMedPubMed Central Google Scholar
Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature462, 886–890 (2009). ArticleCASPubMed Google Scholar
Abdallah, P. et al. A two-step model for senescence triggered by a single critically short telomere. Nat. Cell Biol.11, 988–993 (2009). ArticleCASPubMedPubMed Central Google Scholar
Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat. Cell Biol.11, 980–987 (2009). ArticleCASPubMed Google Scholar
Marvin, M. E. et al. The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences. Genetics183, 453–467 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ribes-Zamora, A., Mihalek, I., Lichtarge, O. & Bertuch, A. A. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat. Struct. Mol. Biol.14, 301–307 (2007). ArticleCASPubMed Google Scholar
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). ArticleCASPubMed Google Scholar
Parker, R. E. Introductory Statistics for Biology 2nd edn (Cambridge Univ.Press, 1997). Google Scholar