The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast (original) (raw)

References

  1. Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12, 2076–2089 (2002).
    Article CAS PubMed Google Scholar
  2. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555 (1993).
    Article CAS PubMed Google Scholar
  3. Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  4. Bupp, J. M., Martin, A. E., Stensrud, E. S. & Jaspersen, S. L. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol. 179, 845–854 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  5. Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23, 1301–1312 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  6. Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167, 605–611 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  7. Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20, 966–976 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  8. Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78–81 (1995).
    Article CAS PubMed Google Scholar
  9. Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955–967 (2004).
    Article CAS PubMed Google Scholar
  10. Mondoux, M. A., Scaife, J. G. & Zakian, V. A. Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres. Genetics 177, 2019–2029 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  11. Taddei, A. & Gasser, S. M. Multiple pathways for telomere tethering: functional implications of subnuclear position for heterochromatin formation. Biochim. Biophys. Acta 1677, 120–128 (2004).
    Article CAS PubMed Google Scholar
  12. Andrulis, E. D. et al. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol. 22, 8292–8301 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  13. Ansari, A. & Gartenberg, M. R. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol. Cell. Biol. 17, 7061–7068 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  14. Denison, C. et al. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4, 246–254 (2005).
    Article CAS PubMed Google Scholar
  15. Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280, 4102–4110 (2005).
    Article CAS PubMed Google Scholar
  16. Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. & Yates, J. R. III Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279, 45662–45668 (2004).
    Article CAS PubMed Google Scholar
  17. Roy, R., Meier, B., McAinsh, A. D., Feldmann, H. M. & Jackson, S. P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p–Sir4p interaction involved in telomeric silencing. J. Biol. Chem. 279, 86–94 (2004).
    Article CAS PubMed Google Scholar
  18. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  19. Carter, S. & Vousden, K. H. p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle 7, 2519–2528 (2008).
    Article CAS PubMed Google Scholar
  20. Zhu, S., Zhang, H. & Matunis, M. J. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Exp. Cell Res. 312, 1042–1049 (2006).
    Article CAS PubMed Google Scholar
  21. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  22. Chen, X. L. et al. Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177, 17–30 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  23. Hirano, Y., Fukunaga, K. & Sugimoto, K. Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol. Cell 33, 312–322 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  24. Boule, J. B., Vega, L. R. & Zakian, V. A. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57–61 (2005).
    Article CAS PubMed Google Scholar
  25. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004).
    Article CAS PubMed Google Scholar
  26. Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol. 10, 487–490 (2000).
    Article CAS PubMed Google Scholar
  27. Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51–60 (1993).
    Article CAS PubMed Google Scholar
  28. Xhemalce, B. et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl Acad. Sci USA 104, 893–898 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  29. Ungar, L. et al. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res. 37, 3840–3849 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  30. Panse, V. G., Kuster, B., Gerstberger, T. & Hurt, E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat. Cell Biol. 5, 21–27 (2003).
    Article CAS PubMed Google Scholar
  31. Hiraga, S., Botsios, S. & Donaldson, A. D. Histone H3 lysine 56 acetylationby Rtt109 is crucial for chromosome positioning. J. Cell Biol. 183, 641–651 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  32. Potts, P. R. & Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14, 581–590 (2007).
    Article CAS PubMed Google Scholar
  33. Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  34. Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335–343 (2009).
    Article CAS PubMed Google Scholar
  35. Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462, 935–939 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  36. Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).
    Article CAS PubMed Google Scholar
  37. Abdallah, P. et al. A two-step model for senescence triggered by a single critically short telomere. Nat. Cell Biol. 11, 988–993 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  38. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat. Cell Biol. 11, 980–987 (2009).
    Article CAS PubMed Google Scholar
  39. Marvin, M. E. et al. The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences. Genetics 183, 453–467 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  40. Ribes-Zamora, A., Mihalek, I., Lichtarge, O. & Bertuch, A. A. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat. Struct. Mol. Biol. 14, 301–307 (2007).
    Article CAS PubMed Google Scholar
  41. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS PubMed Google Scholar
  42. Parker, R. E. Introductory Statistics for Biology 2nd edn (Cambridge Univ.Press, 1997).
    Google Scholar

Download references