Scatter-factor and semaphorin receptors: cell signalling for invasive growth (original) (raw)
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature411, 342–348 (2001). ArticleCASPubMed Google Scholar
Bissell, M. J. & Radisky, D. Outting tumours in context. Nature Rev. Cancer1, 46–54 (2001). CAS Google Scholar
Stoker, M. Gherardi, E., Perryman, M. & Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature327, 239–242 (1987). CASPubMed Google Scholar
Nakamura, T. et al. Molecular cloning and expression of human hepatocyte growth factor. Nature342, 440–443 (1989). CASPubMed Google Scholar
Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell67, 901–908 (1991). CASPubMed Google Scholar
Naldini, L. et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the Met receptor. EMBO J.10, 2867–2878 (1991). CASPubMedPubMed Central Google Scholar
Skeel, A. et al. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J. Exp. Med.173, 1227–1234 (1991). CASPubMed Google Scholar
Giordano, S., Ponzetto, C., Di Renzo, M. F., Cooper, C. S. & Comoglio, P. M. Tyrosine kinase receptor indistinguishable from the c-Met protein. Nature339, 155–156 (1989). CASPubMed Google Scholar
Gaudino, G. et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J.13, 3524–3532 (1994). CASPubMedPubMed Central Google Scholar
Wang, M. H. et al. Identification of the RON gene product as the receptor for the human macrophage stimulating protein. Science266, 117–119 (1994). CASPubMed Google Scholar
Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell75, 1389–1399 (1993). CASPubMed Google Scholar
Winberg, M. L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell95, 903–916 (1998). CASPubMed Google Scholar
Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell99, 71–80 (1999). ArticleCASPubMed Google Scholar
Tamagnone, L. & Comoglio, P. M. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol.10, 377–383 (2000). ArticleCASPubMed Google Scholar
Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell66, 697–711 (1991). CASPubMed Google Scholar
Berdichevsky, F., Alford, D., Souza B. & Taylor-Papadimitriou, J. Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci.107, 3557–3568 (1994). CASPubMed Google Scholar
Soriano, J. V., Pepper, M. S., Nakamura, T., Orci, L. & Montesano, R. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci.108, 413–430 (1995). CASPubMed Google Scholar
Niemann, C. et al. Reconstitution of mammary gland development in vitro: requirement of c-Met and c-ErbB2 signaling for branching and alveolar morphogenesis. J. Cell Biol.143, 533–545 (1998).Shows that HGF promotes the formation of branched tubules in mouse mammary epithelial cells that are cultured in matrigel, as well as in human mammary carcinoma tissue, in explant culture. The same morphogenetic response can be observed following transfection of GAB1, MET's main intracellular substrate. CASPubMedPubMed Central Google Scholar
Brinkmann, V., Foroutan, H., Sachs, H., Weidner, K. M. & Birchmeier, W. Hepatocyte growth factor/scatter factor induces a variety of tissue specific morphogenic programs in epithelial cells. J. Cell Biol.131, 1573–1586 (1995). CASPubMed Google Scholar
Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol.119, 629–640 (1992). CASPubMed Google Scholar
Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature373, 699–702 (1995). CASPubMed Google Scholar
Uehara, Y. et al. Placental defect and embryonal lethality in mice lacking hepatocyte growth factor/scatter factor. Nature373, 702–705 (1995). CASPubMed Google Scholar
Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature376, 768–771 (1995). CASPubMed Google Scholar
Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nature Neurosci.4, 1169–1176 (2001). CASPubMed Google Scholar
Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron17, 1157–1172 (1996). CASPubMed Google Scholar
Wong, V. et al. Hepatocyte growth factor promotes motor neuron survival and synergizes with ciliary neurotrophic factor. J. Biol. Chem.272, 5187–5191 (1997). CASPubMed Google Scholar
Yamamoto, Y. et al. Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development124, 2903–2913 (1997). CASPubMed Google Scholar
Maina, F., Hilton, M. C., Ponzetto, C., Davies, A. M. & Klein, R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev.11, 3341–3350 (1997). CASPubMedPubMed Central Google Scholar
Maina, F. et al. Multiple roles for hepatocyte growth factor in sympathetic neuron development. Neuron20, 835–846 (1998). CASPubMed Google Scholar
Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell75, 217–227 (1993). CASPubMed Google Scholar
Wong, J. T., Wong, S. T. & O'Connor, T. P. Ectopic semaphorin-1a functions as an attractive guidance cue for developing peripheral neurons. Nature Neurosci.2, 798–803 (1999). CASPubMed Google Scholar
de Castro, F., Hu, L., Drabkin, H., Sotelo, C. & Chedotal, A. Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J. Neurosci.19, 4428–4436 (1999). CASPubMedPubMed Central Google Scholar
Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature404, 567–573 (2000). CASPubMed Google Scholar
Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol.146, 233–242 (1999). CASPubMedPubMed Central Google Scholar
Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature311, 29–33 (1984). CASPubMed Google Scholar
Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA91, 4731–4735 (1994). CASPubMedPubMed Central Google Scholar
Bellusci, S. et al. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene9, 1091–1099 (1994). CASPubMed Google Scholar
Jeffers, M., Rong, S., Anver, M. & Vande Woude, G. F. Autocrine hepatocyte growth factor/scatter factor signalling induces transformation and the invasive/metastatic phenotype in C127 cells. Oncogene13, 853–861 (1996). CASPubMed Google Scholar
Meiners, S., Brinkmann, V., Naundorf, H. & Birchmeier, W. Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene16, 9–20 (1998). CASPubMed Google Scholar
Liang, T. J., Reid, A. E., Xavier, R., Cardiff, R. D. & Wang, T. C. Transgenic expression of Tpr–Met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest.97, 2872–2877 (1996). CASPubMedPubMed Central Google Scholar
Jeffers, M. et al. The mutationally activated Met receptor mediates motility and metastasis. Proc. Natl Acad. Sci. USA95, 14417–14422 (1998). CASPubMedPubMed Central Google Scholar
Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J. & Bishop, M. J. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J. Cell Biol.153, 1023–1034 (2001).The firstin vivodemonstration that transgenic overexpression of wild-type Met in hepatocytes of mice allows HGF-independent activation of the receptor, leading to development of hepatocellular carcinomas. Inactivation of the transgene results in regression of even highly advanced tumours. CASPubMedPubMed Central Google Scholar
Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl Acad. Sci. USA94, 701–706 (1997). CASPubMedPubMed Central Google Scholar
Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res.58, 5157–5167 (1998). CASPubMed Google Scholar
Ferracini, R. et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene10, 739–749 (1995). CASPubMed Google Scholar
Ferracini, R. et al. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene12, 1697–1705 (1996). CASPubMed Google Scholar
Scotlandi, K. et al. Expression of Met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors. Am. J. Pathol.149, 1209–1219 (1996). CASPubMedPubMed Central Google Scholar
Di Renzo, M. F. et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene7, 2549–2553 (1992). CASPubMed Google Scholar
Di Renzo, M. F. et al. Overexpression of the MET/HGF receptor in ovarian cancer. Int. J. Cancer58, 658–662 (1994). CASPubMed Google Scholar
Di Renzo, M. F., Poulsom, R., Olivero, M., Comoglio, P. M. & Lemoine, N. R. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res.55, 1129–1138 (1995). CASPubMed Google Scholar
Humphrey, P. A. et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol.147, 386–396 (1995). CASPubMedPubMed Central Google Scholar
Natali, P. G. et al. Overexpression of the MET/HGF receptor in renal cell carcinomas. Int. J. Cancer69, 212–217 (1996). CASPubMed Google Scholar
Ruco, L. et al. Expression of Met protein in thyroid tumours. J. Pathol.180, 266–270 (1996). CASPubMed Google Scholar
Tuck, A. B., Park, M., Sterns, E. E., Boag, A. & Elliott, B. E. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am. J. Pathol.148, 225–232 (1996). CASPubMedPubMed Central Google Scholar
Ueki, T., Fujimoto, J., Suzuki, T., Yamamoto, H. & Okamoto, E. Expression of hepatocyte growth factor and its receptor, the c-Met proto-oncogene, in hepatocellular carcinoma. Hepatology25, 619–623 (1997). CASPubMed Google Scholar
Jin, L. et al. Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer79, 749–760 (1997). CASPubMed Google Scholar
Toniguchi, K. et al. The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-Met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer82, 2112–2122 (1998). Google Scholar
Porte, H. et al. Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in human esophageal carcinoma: implications for prognosis. Clin. Cancer Res.4, 1375–1382 (1998). CASPubMed Google Scholar
Zanetti, A. et al. Expression of Met protein and urokinase-type plasminogen activator receptor (uPA-R) in papillary carcinoma of the thyroid. J. Pathol.186, 287–291 (1998). CASPubMed Google Scholar
Camp, R. L., Rimm, E. B. & Rimm, D. L. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer86, 2259–2265 (1999). CASPubMed Google Scholar
Chen, B. K. et al. Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic state. Pathol. Res. Pract.195, 427–433 (1999). CASPubMed Google Scholar
Tavian, D. et al. U-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int. J. Cancer87, 644–649 (2000). CASPubMed Google Scholar
Wielenga, V. J. et al. Expression of c-MET and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am. J. Pathol.157, 1563–1573 (2000). CASPubMedPubMed Central Google Scholar
Ramirez, R. et al. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (c-MET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin. Endocrinol.53, 635–644 (2000). CAS Google Scholar
Edakuni, G., Sasatomi, E., Satoh, T., Tokunaga, O. & Miyazaki, K. Expression of the hepatocyte growth factor/ c-Met pathway is increased at the cancer front in breast carcinoma. Pathol. Int.51, 172–178 (2001). CASPubMed Google Scholar
Tapper, J. et al. Changes in gene expression during progression of ovarian carcinoma. Cancer Genet. Cytogenet.128, 1–6 (2001). CASPubMed Google Scholar
Huang, T. J., Wang, J. Y., Lin, S. R., Lian, S. T. & Hsieh, J. S. Overexpression of the c-Met protooncogene in human gastric carcinoma — correlation to clinical features. Acta Oncol.40, 638–643 (2001). CASPubMed Google Scholar
Takeo, S. et al. Examination of oncogene amplification by genomic DNA microarray in hepatocellular carcinomas: comparison with comparative genomic hybridisation analysis. Cancer Genet. Cytogenet.130, 127–132 (2001). CASPubMed Google Scholar
Morello, S. et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J. Cell. Physiol.189, 285–290 (2001). CASPubMed Google Scholar
Huang, Y. et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc. Natl Acad. Sci. USA98, 15044–15049 (2001). CASPubMedPubMed Central Google Scholar
Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet.16, 68–73 (1997).The first report of naturally occurring oncogenic mutations of MET in humans. Missense mutations were identified that are located in the tyrosine kinase domain of theMETgene in the germ line of patients who suffer from hereditary papillary renal-cell carcinomas and in a subset of sporadic papillary renal carcinomas. CASPubMed Google Scholar
Fischer, J. et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene17, 733–739 (1998). CASPubMed Google Scholar
Schmidt, L. et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene18, 2343–2350 (1999). CASPubMed Google Scholar
Olivero, M. et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int. J. Cancer82, 640–643 (1999). CASPubMed Google Scholar
Park, W. S. et al. Somatic mutations in the kinase domain of the MET/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res.59, 307–310 (1999). CASPubMed Google Scholar
Lee, J. H. et al. A novel germ line juxtamembrane MET mutation in human gastric cancer. Oncogene19, 4947–4953 (2000). CASPubMed Google Scholar
Jeffers, M. et al. Activating mutations for the MET tyrosine kinase receptor in human cancer. Proc. Natl Acad. Sci. USA94, 11445–11450 (1997). CASPubMedPubMed Central Google Scholar
Michieli, P. et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene18, 5221–5231 (1999).Shows that the transforming potential displayed by mutant forms of MET found in human cancer is not only sensitive to, but entirely contingent on, the presence of HGF. This finding indicates that mutant MET-driven tumour development relies on local availability and tissue distribution of active HGF and provides proof-of-concept for the treatment of MET-dependent neoplasms by HGF antagonists. CASPubMed Google Scholar
Yao, Y. et al. Scatter factor protein levels in human breast cancers: clinicopathological and biological correlations. Am. J. Pathol.149, 1707–1717 (1996). CASPubMedPubMed Central Google Scholar
Di Renzo, M. F. et al. Overexpression and amplification of the MET/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res.1, 147–154 (1995). CASPubMed Google Scholar
Di Renzo, M. F. et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene19, 1547–1555 (2000).The first report of a direct involvement of MET in tumour metastasis in humans. Neoplastic cells that harbour activating mutations of theMETgene undergo clonal expansion during the metastatic spreading of head and neck squamous-cell carcinomas. CASPubMed Google Scholar
Eagles, G. et al. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br. J. Cancer73, 377–381 (1996). CASPubMedPubMed Central Google Scholar
Nagafuchi, A. Molecular architecture of adherens junctions. Curr. Opin. Cell Biol.13, 600–603 (2001). CASPubMed Google Scholar
Tannapfel, A., Yasui, W., Yokozaki, H., Wittekind, C. & Tahara, E. Effect of hepatocyte growth factor on the expression of E- and P-cadherin in gastric carcinoma cell lines. Virchows Arch.425, 139–144 (1994). CASPubMed Google Scholar
Miura, H. et al. Effects of hepatocyte growth factor on E-cadherin-mediated cell–cell adhesion in DU145 prostate cancer cells. Urology58, 1064–1069 (2001). CASPubMed Google Scholar
Balkovetz, D. F., Pollack, A. L. & Mostov, K. E. Hepatocyte growth factor alters the polarity of Madin–Darby canine kidney cell monolayers. J. Biol. Chem.272, 3471–3477 (1997). CASPubMed Google Scholar
Balkovetz, D. F. & Sambandam, V. Dynamics of E-cadherin and γ-catenin complexes during dedifferentiation of polarized MDCK cells. Kidney Int.56, 910–921 (1999). CASPubMed Google Scholar
Davies, G., Jiang, W. G. & Mason, M. D. Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell–cell dissociation and in vitro invasion. Clin. Cancer Res.7, 3289–3297 (2001). CASPubMed Google Scholar
Shibamoto, S. et al. Tyrosine phosphorylation of β-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Commun.1, 295–305 (1994). CASPubMed Google Scholar
Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol.13, 555–562 (2001). CASPubMed Google Scholar
Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem.275, 21785–21788 (2000). CASPubMed Google Scholar
Woods, A. & Couchman, J. R. Integrin modulation by lateral association. J. Biol. Chem.275, 24233–24236 (2000). CASPubMed Google Scholar
Nebe, B., Sanftleben, H., Pommerenke, H., Peters, A. & Rychly, J. Hepatocyte growth factor enables enhanced integrin-cytoskeleton linkage by affecting integrin expression in subconfluent epithelial cells. Exp. Cell Res.243, 263–273 (1998). CASPubMed Google Scholar
Liang, C. C. & Chen, H. C. Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin α2 expression that is involved in cell scattering. J. Biol. Chem.276, 21146–21152 (2001). CASPubMed Google Scholar
Trusolino, L. et al. Growth factor-dependent activation of αvβ3 integrin in normal epithelial cells: implications for tumor invasion. J. Cell Biol.142, 1145–1156 (1998). CASPubMedPubMed Central Google Scholar
Trusolino, L. et al. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J.14, 1629–1640 (2000). CASPubMed Google Scholar
Brooks, P. C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ Cell85, 683–693 (1996). CASPubMed Google Scholar
Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G. & Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science277, 225–228 (1997). CASPubMed Google Scholar
Rosenthal, E. L. et al. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor- and scatter factor-stimulated invasion of carcinoma cells. Cancer Res.58, 5221–5230 (1998). CASPubMed Google Scholar
Nabeshima, K. et al. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res.60, 3364–3369 (2000). CASPubMed Google Scholar
Monvoisin, A. et al. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int. J. Cancer97, 157–162 (2002). CASPubMed Google Scholar
Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med.6, 389–395 (2000). CASPubMed Google Scholar
Martin-Satue, M. & Blanco, J. Identification of semaphorin E gene expression in metastatic human lung adenocarcinoma cells by mRNA differential display. J. Surg. Oncol.72, 18–23 (1999). CASPubMed Google Scholar
Yamada, T., Endo, R., Gotoh, M. & Hirohashi, S. Identification of semaphorin E as a non-MDR drug resistance gene of human cancer. Proc. Natl Acad. Sci. USA94, 14713–14718 (1997). CASPubMedPubMed Central Google Scholar
Christensen, C. R. et al. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Res.58, 1238–1244 (1998). CASPubMed Google Scholar
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell103, 211–225 (2000). CASPubMed Google Scholar
Ponzetto, C. et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell77, 261–271 (1994). CASPubMed Google Scholar
Pelicci, G. et al. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene10, 1631–1638 (1995). CASPubMed Google Scholar
Weidner, K. M. et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature384, 173–176 (1996). CASPubMed Google Scholar
Gual, P. et al. Sustained recruitment of phospholipase c-γ to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene19, 1509–1518 (2000). CASPubMed Google Scholar
Maroun, C. R., Naujokas, M. A., Holgado-Madruga, M., Wong, A. J. & Park, M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol.20, 8513–8525 (2000). CASPubMedPubMed Central Google Scholar
Schaeper, U. et al. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J. Cell Biol.149, 1419–1432 (2000). CASPubMedPubMed Central Google Scholar
Boccaccio, C. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature391, 285–288 (1998). CASPubMed Google Scholar
Bardelli, A. et al. Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proc. Natl Acad. Sci. USA95, 14379–14383 (1998). CASPubMedPubMed Central Google Scholar
Maina, F. et al. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell87, 531–542 (1996). CASPubMed Google Scholar
Sachs, M. et al. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. J. Cell Biol.133, 1095–1107 (1996). CASPubMed Google Scholar
Giordano, S. et al. A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proc. Natl Acad. Sci. USA94, 13868–13872 (1997). CASPubMedPubMed Central Google Scholar
Bardelli, A. et al. Concomitant activation of pathways downstream of Grb2 and PI3-kinase is required for MET-mediated metastasis. Oncogene18, 1139–1146 (1999). CASPubMed Google Scholar
Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell107, 643–654 (2001). CASPubMed Google Scholar
Peschard, P. et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell8, 995–1004 (2001).A new mechanism of MET-dependent oncogenic transformation. The c-CBL adaptor protein binds a juxtamembrane tyrosine residue on MET and drives it to ubiquitin-mediated proteasomal degradation. A MET receptor in which this tyrosine is replaced by phenylalanine does not undergo polyubiquitylation and displays transforming activity in fibroblasts and epithelial cells. CASPubMed Google Scholar
Petrelli, A. et al. The endophilin/CIN85/CBL complex mediates ligand-dependent down-regulation of c-Met. Nature416, 187–190 (2002). CASPubMed Google Scholar
Brodin, L., Low, P. & Shupliakov, O. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr. Opin. Neurobiol.10, 312–320 (2000). CASPubMed Google Scholar
Winberg, M. L. et al. The transmembrane protein Off-Track associates with plexins and functions downstream of semaphorin signaling during axon guidance. Neuron32, 53–62 (2001). CASPubMed Google Scholar
Luo, L. RHO–GTPases in neuronal morphogenesis. Nature Rev. Neurosci.1, 173–180 (2000). CAS Google Scholar
Dickson, B. J. RHO–GTPases in growth cone guidance. Curr. Opin. Neurobiol.11, 103–110 (2001). CASPubMed Google Scholar
Rohm, B., Rahim, B., Kleiber, B., Hovatta, I. & Pueschel, A. W. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett.486, 68–72 (2000). CASPubMed Google Scholar
Vikis, H. G., Li, W., He, Z. & Guan, K.-L. The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner. Proc. Natl Acad. Sci. USA97, 12457–12462 (2000). CASPubMedPubMed Central Google Scholar
Driessens, M. H. et al. Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr. Biol.11, 339–344 (2001). CASPubMed Google Scholar
Hu, H., Marton, T. F. & Goodman, C. S. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signalling. Neuron32, 39–51 (2001). CASPubMed Google Scholar
Simon, M. A. Receptor tyrosine kinases: specific outcomes from general signals. Cell103, 13–15 (2000). CASPubMed Google Scholar
Pawson, T. & Saxton, T. M. Signaling networks — do all roads lead to the same genes? Cell97, 675–678 (1999). CASPubMed Google Scholar
Maina, F. et al. Coupling Met to specific pathways results in distinct developmental outcomes. Mol. Cell7, 1293–1306 (2001).Addresses,in vivo, the issue of whether the specificity of tyrosine-kinase-receptor-dependent responses is determined by qualitative or quantitative differences in signalling outputs. KnockinMetmutants with optimal PI3K or Src binding motifs result in loss of function, but display different phenotypes and rescue of specific cell types, indicating that specific signalling pathways are necessary to achieve specific biological responses. CASPubMed Google Scholar
Karihaloo, A., O'Rourke, D. A., Nickel, C. H., Spokes, K. & Cantley, L. G. Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J. Biol. Chem.276, 9166–9173 (2001). CASPubMed Google Scholar
Boccaccio, C., Andò, M. & Comoglio, P. M. A differentiation switch for genetically modified hepatocytes. FASEB J.16, 120–122 (2002). CASPubMed Google Scholar
Chan, A. M. et al. Identification of a competitive HGF antagonist encoded by an alternative transcript. Science254, 1382–1385 (1991). CASPubMed Google Scholar
Hartmann, G. et al. A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc. Natl Acad. Sci. USA89, 11574–11578 (1992). CASPubMedPubMed Central Google Scholar
Lokker, N. A. et al. Structure–function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J.11, 2503–2510 (1992). CASPubMedPubMed Central Google Scholar
Cioce, V. et al. Hepatocyte growth factor (HGF)/NK1 is a naturally occurring HGF/scatter factor variant with partial agonist/antagonist activity. J. Biol. Chem.271, 13110–13115 (1996). CASPubMed Google Scholar
Waltz, S. E. et al. Functional characterization of domains contained in hepatocyte growth factor-like protein. J. Biol. Chem.272, 30526–30537 (1997). CASPubMed Google Scholar
Matsumoto, K., Kataoka, H., Date, K. & Nakamura, T. Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J. Biol. Chem.273, 22913–22920 (1998). CASPubMed Google Scholar
Danilkovitch, A., Miller, M. & Leonard, E. J. Interaction of macrophage-stimulating protein with its receptor. Residues critical for β-chain binding and evidence for independent alpha chain binding. J. Biol. Chem.274, 29937–29943 (1999). CASPubMed Google Scholar
Michieli, P. et al. An HGF-MSP chimaera disassociates the trophic properties of scatter factors from their pro-invasive activity. Nature Biotechnol. (in the press).
Kawaida, K., Matsumoto, K., Shimazu, H. & Nakamura, T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc. Natl Acad. Sci. USA91, 4357–4361 (1994). CASPubMedPubMed Central Google Scholar
Tsubouchi, H. et al. Clinical significance of human hepatocyte growth factor in blood from patients with fulminant hepatic failure. Hepatology9, 875–881 (1989). CASPubMed Google Scholar
Yaekashi, M. et al. Simultaneous or delayed administration of hepatocyte growth factor (HGF) equally repress the fibrotic changes in murine lung injury by bleomycin: a morphological study. Am. J. Respir. Clin. Care Med.156, 1937–1944 (1997). Google Scholar
Ueki, T. et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nature Med.5, 226–230 (1999).An example of how the beneficial trophic properties of HGF can be exploited for therapeutic applications. In a rat model of lethal liver cirrhosis, transduction of skeletal muscles with the humanHGFgene increases HGF plasma levels and produces the complete resolution of fibrosis in the cirrhotic livers, thereby improving the survival rate of rats. CASPubMed Google Scholar
Kuba, K. et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res.60, 6737–6743 (2000). CASPubMed Google Scholar
Cao, B. et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl Acad. Sci. USA98, 7443–7448 (2001). CASPubMedPubMed Central Google Scholar
Abounader, R. et al. In vivo targeting of SF/HGF and c-MET expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J.16, 108–110 (2002). CASPubMed Google Scholar
The Semaphorin Nomenclature Committee. Unified nomenclature for the semaphorin/collapsins. Cell97, 551–552 (1999).
Ponzetto, C. et al. c-Met is amplified but not mutated in a cell line with an activated Met tyrosine kinase. Oncogene6, 553–559 (1991). CASPubMed Google Scholar