- Wen, P. Y., Black, P. M. & Loeffler, J. S. in Cancer. Principles and Practice of Oncology (eds De Vita, V. J., Helman, S. & Rosenberg, S. A.) 2655–2670 (Lippincott Williams & Wilkins, Philadelphia, 2001).
Google Scholar
- Fidler, I. J. in Cancer: Principles & Practice of Oncology (eds De Vita, V. J., Helman, S. & Rosenberg, S. A.) 135–152 (Lippincott–Raven Publishers, Philadelphia, 1997).
Google Scholar
- Stetler-Stevenson, W. G. & Kleiner Jr., D. E. in Cancer: Principles and Practice of Oncology (eds De Vita, V. J., Helman, S. & Rosenberg, S. A.) 123–136 (Lippincott Williams & Wilkins, Philadelphia, 2001).
Google Scholar
- Butler, T. P. & Gullino, P. M. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 35, 512–516 (1975).
CAS PubMed Google Scholar
- Ruoslahti, E. How cancer spreads. Sci. Am. 275, 72–77 (1996).
CAS PubMed Google Scholar
- Folkman, J. & Klagsburn, M. Angiogenic factors. Science 235, 442–447 (1987).
CAS PubMed Google Scholar
- Folkman, J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763 (1995).
CAS PubMed Google Scholar
- Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).
CAS PubMed Google Scholar
- Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant negative Flk-1 mutant. Nature 367, 576–579 (1994).
CAS PubMed Google Scholar
- Saleh, M., Stacker, S. A. & Wilks, A. F. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res. 56, 393–401 (1996).
CAS PubMed Google Scholar
- Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).
CAS PubMed Google Scholar
- Clarijs, R., Ruiter, D. J. & de Waal, R. M. Lymphangiogenesis in malignant tumours: does it occur? J. Pathol. 193, 143–146 (2001).
CAS PubMed Google Scholar
- Karpanen, T. & Alitalo, K. Lymphatic vessels as targets of tumor therapy. J. Exp. Med. 194, F37–F42 (2001).
CAS PubMed PubMed Central Google Scholar
- Sleeman, J. P., Krishnan, J., Kirkin, V. & Baumann, P. Markers for the lymphatic endothelium: in search of the holy grail? Microsc. Res. Tech. 55, 61–69 (2001).
CAS PubMed Google Scholar
- Oh, S.-J. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev. Biol. 188, 96–109 (1997).
CAS PubMed Google Scholar
- Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).Demonstration in vivo that overexpression of VEGFC induces the growth of pre-existing lymphatic vessels in the skin of transgenic mice.
Article CAS PubMed Google Scholar
- Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk-1) and VEGF receptor 3 (Flt-4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).Shows that VEGFD (previously described as a growth factor for fibroblasts – see reference 32 ) is a ligand for VEGFR2 and VEGFR3, thereby defining the subfamily of lymphangiogenic growth factors (which consists of VEGFD and VEGFC).
CAS PubMed PubMed Central Google Scholar
- Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20, 672–682 (2001).Reports that expression of VEGFC in the Rip-Tag mouse model confers on islet-cell tumours the ability to spread to regional lymph nodes.
CAS PubMed PubMed Central Google Scholar
- Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med. 7, 192–198 (2001).Shows that overexpression of VEGFC in a human tumour xenograft is capable of inducing lymphangiogenesis, which mediates lymphatic metastasis.
CAS PubMed Google Scholar
- Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 20, 1223–1231 (2001).
CAS PubMed PubMed Central Google Scholar
- Stacker, S. A. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med. 7, 186–191 (2001).Shows the capacity of VEGFD to speed tumour growth by promoting angiogenesis. VEGFD also stimulated tumour lymphangiogenesis and lymphatic metastasis, which could be specifically inhibited with an anti-VEGFD monoclonal antibody. In this model, overexpression of VEGF caused an increase in tumour angiogenesis and growth, but did not stimulate lymphangiogenesis or the spread of cancer cells to the lymphatics.
CAS PubMed Google Scholar
- Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).
CAS PubMed PubMed Central Google Scholar
- Lee, J. et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl Acad. Sci. USA 93, 1988–1992 (1996).
CAS PubMed PubMed Central Google Scholar
- Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).Demonstration that the lymphangiogenic factor VEGFC is processed by proteolysis to generate a form that binds receptors with high affinity and activates VEGFR2 and VEGFR3.
CAS PubMed PubMed Central Google Scholar
- Kaipainen, A. et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA 92, 3566–3570 (1995).
CAS PubMed PubMed Central Google Scholar
- Enholm, B. et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14, 2475–2483 (1997).
CAS PubMed Google Scholar
- Ristimaki, A., Narko, K., Enholm, B., Joukov, V. & Alitalo, K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 273, 8413–8418 (1998).
CAS PubMed Google Scholar
- Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829–3837 (1996).
CAS PubMed Google Scholar
- Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl Acad. Sci. USA 95, 14389–14394 (1998).
CAS PubMed PubMed Central Google Scholar
- Witzenbichler, B. et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am. J. Pathol. 153, 381–394 (1998).
CAS PubMed PubMed Central Google Scholar
- Pepper, M. S., Mandriota, S. J., Jeltsch, M., Kumar, V. & Alitalo, K. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J. Cell. Physiol. 177, 439–452 (1998).
CAS PubMed Google Scholar
- Orlandini, M., Marconcini, L., Ferruzzi, R. & Oliviero, S. Identification of a c-_fos_-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl Acad. Sci. USA 93, 11675–11680 (1996).
CAS PubMed PubMed Central Google Scholar
- Stacker, S. A. et al. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J. Biol. Chem. 274, 32127–32136 (1999).
CAS PubMed Google Scholar
- Baldwin, M. E. et al. The specificity of receptor binding by vascular endothelial growth factor-D is different in mouse and man. J. Biol. Chem. 276, 19166–19171 (2001).
CAS PubMed Google Scholar
- Marconcini, L. et al. _c-fos_-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9671–9676 (1999).
CAS PubMed PubMed Central Google Scholar
- Achen, M. G. et al. Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. J. Pathol. 193, 147–154 (2001).
CAS PubMed Google Scholar
- Pajusola, K. et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52, 5738–5743 (1992).
CAS PubMed Google Scholar
- Galland, F. et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene 8, 1233–1240 (1993).
CAS PubMed Google Scholar
- Pajusola, K. et al. Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene 9, 3545–3555 (1994).
CAS PubMed Google Scholar
- Mäkinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).Shows that lymphatic endothelial cells can be isolated from preparations of primary microvascular endothelium using anti-VEGFR3 antibodies. Identifies signal-transduction pathways for growth, survival and migration in lymphatic endothelial cells.
PubMed PubMed Central Google Scholar
- Aselli, G. De Lacteibus sive Lacteis Venis, Quarto Vasorum Mesarai corum Genere novo invento (Mediolani, Milano, 1627).
Google Scholar
- Harvey, W. On the Motion of the Heart and Blood in Animals, 1628 (P. F. Collier & Son Company, New York; translated by Robert Willis, 1909–1914).
- Partanen, T. A. et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 14, 2087–2096 (2000).
CAS PubMed Google Scholar
- Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154, 1381–1390 (1999).
CAS PubMed PubMed Central Google Scholar
- Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries. Podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 154, 385–394 (1999).
CAS PubMed PubMed Central Google Scholar
- Breiteneder-Geleff, S. et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am. J. Pathol. 151, 1141–1152 (1997).
CAS PubMed PubMed Central Google Scholar
- Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).
CAS PubMed Google Scholar
- Prevo, R., Banerji, S., Ferguson, D. J., Clasper, S. & Jackson, D. G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 276, 19420–19430 (2001).Together with reference 97 , this study defines LYVE1 as a useful marker of the lymphatic endothelium.
CAS PubMed Google Scholar
- Carreira, C. M. et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 61, 8079–8084 (2001).
CAS Google Scholar
- Nibbs, R. J. et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol. 158, 867–877 (2001).
CAS PubMed PubMed Central Google Scholar
- Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med. 194, 797–808 (2001).
CAS PubMed PubMed Central Google Scholar
- Karkkainen, M. J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl Acad. Sci. USA 98, 12677–12682 (2001).
CAS PubMed PubMed Central Google Scholar
- Schmelz, M. & Franke, W. W. Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymph nodes. Eur. J. Cell. Biol. 61, 274–289 (1993).
CAS PubMed Google Scholar
- Turner, R. R., Beckstead, J. H., Warnke, R. A. & Wood, G. S. Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am. J. Clin. Pathol. 87, 569–575 (1987).
CAS PubMed Google Scholar
- Barsky, S. H., Baker, A., Siegal, G. P., Togo, S. & Liotta, L. A. Use of anti-basement membrane antibodies to distinguish blood vessel capillaries from lymphatic capillaries. Am. J. Surg. Pathol. 7, 667–677 (1983).
CAS PubMed Google Scholar
- Partanen, T. A. et al. Endothelial growth factor receptors in human fetal heart. Circulation 100, 583–586 (1999).
CAS PubMed Google Scholar
- Jussila, L. et al. Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against vascular endothelial growth factor receptor-3. Cancer Res. 58, 1599–1604 (1998).
CAS PubMed Google Scholar
- Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).
CAS PubMed PubMed Central Google Scholar
- Dukes, C. E. The classification of cancer of the rectum. J. Pathol. 35, 323–332 (1932).
Google Scholar
- Fisher, B. et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer 52, 1551–1557 (1983).
CAS PubMed Google Scholar
- Greenlee, R. T., Hill-Harmon, M. B., Murray, T. & Thun, M. Cancer statistics, 2001. CA Cancer J. Clin. 51, 15–36 (2001).
CAS PubMed Google Scholar
- Wells, K. E. et al. Sentinel lymph node biopsy in melanoma of the head and neck. Plast. Reconstr. Surg. 100, 591–594 (1997).
CAS PubMed Google Scholar
- Albertini, J. J. et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276, 1818–1822 (1996).
CAS PubMed Google Scholar
- Albertini, J. J. et al. Intraoperative radio-lympho-scintigraphy improves sentinel lymph node identification for patients with melanoma. Ann. Surg. 223, 217–224 (1996).
CAS PubMed PubMed Central Google Scholar
- Pepper, M. S. Lymphangiogenesis and tumor metastasis: more questions than answers. Lymphology 33, 144–147 (2000).
CAS PubMed Google Scholar
- Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K. & Jain, R. K. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60, 4324–4327 (2000).
CAS PubMed Google Scholar
- Witte, M. H., Way, D. L., Witte, C. L. & Bernas, M. in Regulation of Angiogenesis 65–112 (Birkhäuser Verlag, Basel, 1997).
Google Scholar
- Beasley, N. J. P. et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 62, 1315–1320 (2002).
CAS PubMed Google Scholar
- Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).Shows that the intratumoral lymphatic vessels in an experimental tumour lack various functional characteristics in terms of supporting fluid transport. Provides support for the theory that lymphatic vessels at the periphery, rather than within the tumour, are responsible for metastasis.
CAS PubMed Google Scholar
- Pepper, M. S. Lymphangiogenesis and tumor metastasis: myth or reality? Clin. Cancer Res. 7, 462–468 (2001).
CAS PubMed Google Scholar
- Karpanen, T. et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61, 1786–1790 (2001).
CAS PubMed Google Scholar
- Skobe, M. et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am. J. Pathol. 159, 893–903 (2001).
CAS PubMed PubMed Central Google Scholar
- Mattila, M. M., Ruohola, J. K., Karpanen, T., Jackson, D. G. & Härkönen, P. L. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumours. Int. J. Cancer 98, 946–951 (2002).
CAS PubMed Google Scholar
- He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl Cancer. Inst. 94, 819–825 (2002).
CAS PubMed Google Scholar
- Kadambi, A. et al. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res. 61, 2404–2408 (2001).
CAS PubMed Google Scholar
- Chang, Y. S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci. USA 97, 14608–14613 (2000).
CAS PubMed PubMed Central Google Scholar
- Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).
CAS PubMed PubMed Central Google Scholar
- Kim, I. et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E- selectin through nuclear factor-κB activation in endothelial cells. J. Biol. Chem. 276, 7614–7620 (2001).
CAS PubMed Google Scholar
- Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868–8873 (2002).
CAS PubMed PubMed Central Google Scholar
- Partanen, T. A., Alitalo, K. & Miettinen, M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86, 2406–2412 (1999).
CAS PubMed Google Scholar
- Kubo, H. et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96, 546–553 (2000).
CAS PubMed Google Scholar
- Gerber, H.-P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).
CAS PubMed Google Scholar
- Salven, P. et al. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am. J. Pathol. 153, 103–108 (1998).
CAS PubMed PubMed Central Google Scholar
- Achen, M. G. et al. The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors 20, 99–107 (2002).
CAS PubMed Google Scholar
- Niki, T. et al. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin. Cancer Res. 6, 2431–2439 (2000).
CAS PubMed Google Scholar
- O-charoenrat, P., Rhys-Evans, P. & Eccles, S. A. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 92, 556–568 (2001).
CAS PubMed Google Scholar
- White, J. D. et al. Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res. 62, 1669–1675 (2002).Recent report showing that VEGFD is an independent prognostic marker for survival in colorectal cancer. One of a number of studies showing a correlation of VEGFC and VEGFD expression with clinical parameters that are associated with cancer progression.
CAS PubMed Google Scholar
- Achen, M. G. et al. Monoclonal antibodies to vascular endothelial growth factor-D block interactions with both VEGF receptor-2 and VEGF receptor-3. Eur. J. Biochem. 267, 2505–2515 (2000).
CAS PubMed Google Scholar
- Mäkinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med. 7, 199–205 (2001).
PubMed Google Scholar
- Fong, T. A. T. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106 (1999).
CAS PubMed Google Scholar
- Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).
CAS PubMed Google Scholar
- Kirkin, V. et al. Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. Eur J. Biochem. 268, 5530–5540 (2001).
CAS PubMed Google Scholar
- Enholm, B. et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ. Res. 88, 623–629 (2001).
CAS PubMed Google Scholar
- Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med. 7, 199–205 (2001).
CAS PubMed Google Scholar
- Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nature Cell Biol. 3, 1076–1085 (2001).
CAS PubMed Google Scholar
- Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2, 175–184 (2002).
CAS Google Scholar
- Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144, 789–801 (1999).
CAS PubMed PubMed Central Google Scholar
- Jackson, D. G., Prevo, R., Clasper, S. & Banerji, S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 22, 317–321 (2001).
CAS PubMed Google Scholar
- Sinzelle, E. et al. Intrapericardial lymphangioma with podoplanin immunohistochemical characterization of lymphatic endothelial cells. Histopathology 37, 93–94 (2000).
CAS PubMed Google Scholar
- Weninger, W. et al. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab. Invest. 79, 243–251 (1999).
CAS PubMed Google Scholar
- Rodriguez-Niedenführ, M. et al. Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat. Embryol. 204, 399–406 (2001).
Google Scholar
- Witmer, A. N. et al. VEGFR-3 in adult angiogenesis. J. Pathol. 195, 490–497 (2001).
CAS PubMed Google Scholar
- Folpe, A. L., Veikkola, T., Valtola, R. & Weiss, S. W. Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi's sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod. Pathol. 13, 180–185 (2000).
CAS PubMed Google Scholar
- Kinoshita, J. et al. Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res. Treat. 66, 159–164 (2001).
CAS PubMed Google Scholar
- Hashimoto, I. et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br. J. Cancer 85, 93–97 (2001).
CAS PubMed PubMed Central Google Scholar
- Akagi, K. et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br. J. Cancer 83, 887–891 (2000).
CAS PubMed PubMed Central Google Scholar
- George, M. L. et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 3, 420–427 (2001).
CAS PubMed PubMed Central Google Scholar
- Hirai, M. et al. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol. Oncol. 80, 181–188 (2001).
CAS PubMed Google Scholar
- Kitadai, Y. et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int. J. Cancer 93, 662–666 (2001).
CAS PubMed Google Scholar
- Yonemura, Y. et al. Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin. Cancer. Res. 5, 1823–1829 (1999).
CAS PubMed Google Scholar
- Ichikura, T., Tomimatsu, S., Ohkura, E. & Mochizuki, H. Prognostic significance of the expression of vascular endothelial growth factor (VEGF) and VEGF-C in gastric carcinoma. J. Surg. Oncol. 78, 132–137 (2001).
CAS PubMed Google Scholar
- Kabashima, A., Maehara, Y., Kakeji, Y. & Sugimachi, K. Overexpression of vascular endothelial growth factor C is related to lymphogenous metastasis in early gastric carcinoma. Oncology 60, 146–150 (2001).
CAS PubMed Google Scholar
- Komuro, H., Kaneko, S., Kaneko, M. & Nakanishi, Y. Expression of angiogenic factors and tumor progression in human neuroblastoma. J. Cancer Res. Clin. Oncol. 127, 739–743 (2001).
CAS PubMed Google Scholar
- Ohta, Y. et al. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br. J. Cancer 81, 54–61 (1999).
CAS PubMed PubMed Central Google Scholar
- Kajita, T. et al. The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br. J. Cancer 85, 255–260 (2001).
CAS PubMed PubMed Central Google Scholar
- Tang, R. F. et al. Overexpression of lymphangiogenic growth factor VEGF-C in human pancreatic cancer. Pancreas 22, 285–292 (2001).
CAS PubMed Google Scholar
- Tsurusaki, T. et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br. J. Cancer 80, 309–313 (1999).
CAS PubMed PubMed Central Google Scholar
- Bunone, G. et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am. J. Pathol. 155, 1967–1976 (1999).
CAS PubMed PubMed Central Google Scholar
- Geng, L. et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 61, 2413–2419 (2001).
CAS PubMed Google Scholar
- Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning and only the latter role is rescued by angiopoietin-1. Dev. Cell (in the press).
- Schoppmann, S. F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. (in the press).