Strategies for MMP inhibition in cancer: innovations for the post-trial era (original) (raw)
Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature284, 67–68 (1980). CASPubMed Google Scholar
López-Otín, C. & Overall, C. M. Protease degradomics, a new challenge for proteomics. Nature Rev. Mol. Cell Biol.3, 509–519 (2002).Introduction of novel concepts and proteomic approaches for protease profiling in pathological conditions, including cancer. Google Scholar
Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol.3, 207–214 (2002).Comprehensive chronicle of the MMP history. CAS Google Scholar
Bramhall, S. R. et al. Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br. J. Cancer86, 1864–1870 (2002).First report of a placebo–controlled double-blind study of success in treating cancer with an MMPI. CASPubMedPubMed Central Google Scholar
Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science295, 2387–2392 (2002).Excellent analysis of the current status of MMPIs for cancer treatment. CASPubMed Google Scholar
Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer2, 163–175 (2002).Excellent and exhaustive description of the newly identified functions of MMPs in cancer. Google Scholar
McCullagh, K., Wadsworth, H. & Hann, M. Carboxyalkyl peptide derivatives. European Patent Application. EU 126,974, pp 1–111 (1984).
Blobel, C. P. Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm. Res.51, 83–84 (2002). CASPubMed Google Scholar
Cal, S. et al. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene283, 49–62 (2002) CASPubMed Google Scholar
Amour, A. et al. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett.473, 275–279 (2000). CASPubMed Google Scholar
Kashiwagi, M., Tortorella, M., Nagase, H. & Brew, K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J. Biol. Chem.276, 12501–12504 (2001). CASPubMed Google Scholar
Naglich, J. G. et al. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res.61, 8480–8485 (2001). CASPubMed Google Scholar
Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer1, 46–54 (2001). CAS Google Scholar
Overall, C. M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules and exosites. Mol. Biotechnol.22, 51–86 (2002). CASPubMed Google Scholar
Uría, J. A. & López-Otín, C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res.60, 4745–4751 (2000). PubMed Google Scholar
Seiki, M. Membrane-type matrix metalloproteinases. APMIS107, 137–143 (1999). CASPubMed Google Scholar
Morgunova, E. et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science284, 1667–1670 (1999). CASPubMed Google Scholar
Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol.2, 31–39 (1998). CASPubMed Google Scholar
Gururajan, R., Grenet, J., Lahti, J. M. & Kidd, V. J. Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36. 3. Genomics52, 101–106 (1998). CASPubMed Google Scholar
Velasco, G. et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem.274, 4570–4576 (1999). CASPubMed Google Scholar
Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell98, 137–146 (1999). CASPubMedPubMed Central Google Scholar
Noe, V. et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci.114, 111–118 (2001). CASPubMed Google Scholar
Fingleton, B., Vargo-Gogola, T., Crawford, H. C. & Matrisian, L. M. Matrilysin (MMP-7) expression selects for cells with reduced sensitivity to apoptosis. Neoplasia3, 459–468 (2001). CASPubMedPubMed Central Google Scholar
McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science289, 1202–1206 (2000).A breakthrough in the use of the yeast two-hybrid system to screen for substrates of extracellular proteases, with the finding that chemokines are novel members of the MMP substrate degradome. CASPubMed Google Scholar
Cornelius, L. A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol.161, 6845–6852 (1998). CASPubMed Google Scholar
Fini, M. E., Cook, J. R., Mohan, R. & Brinckerhoff, C. E. in Matrix Metalloproteinases (eds Parks, W. C. & Mecham, R. P.) 299–356 (Academic Press, New York, 1998). Google Scholar
Westermarck, J. & Kähäri, V. M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J.13, 781–792 (1999). CASPubMed Google Scholar
Kheradmand, F., Werner, E., Tremble, P., Symons, M. & Werb, Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science280, 898–902 (1998). CASPubMed Google Scholar
Overall, C. M., Wrana, J. L. & Sodek, J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-β. J. Biol. Chem.264, 1860–1869 (1989). CASPubMed Google Scholar
Uría, J. A., Jiménez, M. G., Balbín, M., Freije, J. M. P. & López-Otín, C. Differential effects of transforming growth factor-β on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J. Biol. Chem.273, 9769–9777 (1998). PubMed Google Scholar
Overall, C. M. Repression of tissue inhibitor of matrix metalloproteinase expression by all-_trans_-retinoic acid in rat bone cell populations: comparisons with transforming growth factor-β1. J. Cell. Physiol.164, 17–25 (1995). CASPubMed Google Scholar
Jiménez, M. J. et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J. Cell Biol.155, 1333–1344 (2001). PubMedPubMed Central Google Scholar
Simon, C., Goepfert, H. & Boyd, D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res.58, 1135–1139 (1998). CASPubMed Google Scholar
Johansson, N. et al. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J. Cell Sci.113, 227–235 (2000). CASPubMed Google Scholar
Pendás, A. M., Balbin, M., Llano, E., Jimenez, M. G. & López-Otín, C. Structural analysis and promoter characterization of the human collagenase-3 gene (MMP13). Genomics40, 222–233 (1997). PubMed Google Scholar
Bond, M., Baker, A. H. & Newby, A. C. Nuclear factor κB activity is essential for matrix metalloproteinase-1 and -3 upregulation in rabbit dermal fibroblasts. Biochem.Biophys. Res. Commun.264, 561–567 (1999). CAS Google Scholar
Han, Y. P., Tuan, T. L., Wu, H., Hughes, M. & Garner, W. L. TNF-α stimulates activation of pro-MMP2 in human skin through NF-κB mediated induction of MT1-MMP. J. Cell Sci.114, 131–139 (2001). CASPubMed Google Scholar
Ala-aho, R. et al. Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-γ is associated with activation of extracellular signal-regulated kinase-1,2 and STAT1. Oncogene.19, 248–257 (2000). CASPubMed Google Scholar
Crawford, H. C. et al. The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol. Cell Biol.21, 1370–1383 (2001). CASPubMedPubMed Central Google Scholar
Nakamoto, T. et al. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol. Cell Biol.20, 1649–1658 (2000). CASPubMedPubMed Central Google Scholar
Sun, Y. et al. p53 down-regulates human matrix metalloproteinase-1 (collagenase-1) gene expression. J. Biol. Chem.274, 11535–11540 (1999). CASPubMed Google Scholar
Sun, Y. et al. Wild-type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem.275, 11327–11332 (2000). CASPubMed Google Scholar
Kerr, L. D., Miller, D. B. & Matrisian, L. M. TGF-β1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell61, 267–278 (1990). CASPubMed Google Scholar
Benderdour, M. et al. A novel negative regulatory element in the human collagenase-3 proximal promoter region. Biochem. Biophys. Res. Commun.291, 1151–1159 (2002). CASPubMed Google Scholar
Rutter, J. L. et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res.58, 5321–5325 (1998). CASPubMed Google Scholar
Biondi, M. L. et al. MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin. Chem.46, 2023–2024 (2000). CASPubMed Google Scholar
Springman, E. B., Angleton, E. L., Birkedal-Hansen, H. & Van Wart, H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a 'cysteine switch' mechanism for activation. Proc. Natl Acad. Sci. USA87, 364–368 (1990). CASPubMedPubMed Central Google Scholar
Becker, J. W. et al. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci.4, 1966–1976 (1995). CASPubMedPubMed Central Google Scholar
Bannikov, G. A., Karelina, T. V., Collier, I. E., Marmer, B. L. & Goldberg, G. I. Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J. Biol. Chem.277, 16022–16027 (2002). CASPubMed Google Scholar
Overall, C. M. et al. Domain interactions in the gelatinase A:TIMP-2:MT1-MMP activation complex: the ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. J. Biol. Chem.275, 39497–39505 (2000). CASPubMed Google Scholar
Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell99, 81–92 (1999).First presentation of a Mmp-knockout mouse that has a dramatic phenotype. CASPubMed Google Scholar
Knauper, V. et al. Cellular mechanisms for human collagenase-3 (MMP-13) activation: evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J. Biol. Chem.271, 17124–17131 (1996). CASPubMed Google Scholar
Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature370, 61–65 (1994).Identification of the first MT-MMP that is responsible for the cellular activation of MMP-2, and a potential furin-cleavage site in a MMP. CASPubMed Google Scholar
Morrison, C. J. et al. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2 independent pathway. J. Biol. Chem.276, 47402–47410 (2001).Presentation of the first TIMP-2-independent cellular activation pathway of MMP-2 and the role of TIMP-4 in this process. CASPubMed Google Scholar
Steffensen, B., Bigg, H. F. & Overall, C. M. The involvement of the fibronectin type II-like modules of human gelatinase A in cell surface localization and activation. J. Biol. Chem.273, 20622–20628 (1998). CASPubMed Google Scholar
Strongin, A. Y. et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem.270, 5331–5338 (1995).A classical paper on the mechanistic aspects of MMP-2 activation by MT1-MMP and the formation of a trimolecular complex on the cell surface. CASPubMed Google Scholar
Zucker, S. et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J. Biol. Chem.273, 1216–1222 (1998). CASPubMed Google Scholar
Overall, C. M. et al. Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J. Biol. Chem.274, 4421–4429 (1999). CASPubMed Google Scholar
Morgunova, E, Tuuttila, A., Bergmann, U. & Tryggvason, K. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl Acad. Sci. USA99, 7414–7419 (2002). CASPubMedPubMed Central Google Scholar
Deryugina, E. I. et al. MT1-MMP initiates activation of pro-MMP-2 and integrin αvβ3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res.263, 209–223 (2001). CASPubMed Google Scholar
Pei, D. & Weiss, S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature375, 244–247 (1995).Comprehensive protein-engineering study that elucidates the furin mechanism of MMP activation. CASPubMed Google Scholar
Pei, D., Kang, T. & Qi, H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J. Biol. Chem.275, 33988–33997 (2000). CASPubMed Google Scholar
Velasco, G. et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res.60, 877–882 (2000). CASPubMed Google Scholar
Brew, K., Dinakarpandian, D. & Nagase, H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta1477, 267–283 (2000). CASPubMed Google Scholar
Khokha, R. et al. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science243, 947–950 (1989).One of the first papers ever reported on the use of antisense RNA to modulate a genein vivowith a clear demonstration of the importance of the MMP/TIMP balance in maintaining a normal cell phenotype. Disruption of this balance is shown to cause cancer. CASPubMed Google Scholar
Jiang, Y., Goldberg, I. D. & Shi, Y. E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene21, 2245–2252 (2002). CASPubMed Google Scholar
Oh, J. et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell107, 789–800 (2001). CASPubMed Google Scholar
Herman, M. P. et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J. Clin. Invest.107, 1117–1126 (2001). CASPubMedPubMed Central Google Scholar
Mott, J. D. et al. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J. Biol. Chem.275, 1384–1390 (2000). CASPubMed Google Scholar
Petitclerc, E. et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem.275, 8051–8061 (2000). CASPubMed Google Scholar
Stetefeld, J. et al. The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nature Struct. Biol.8, 705–709 (2001). CASPubMed Google Scholar
Hua, J. & Muschel, R. J. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res.56, 5279–5284 (1996). CASPubMed Google Scholar
Kondraganti, S. et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res.60, 6851–6855 (2000). CASPubMed Google Scholar
Nagavarapu, U., Relloma, K. & Herron, G. S. Membrane type 1 matrix metalloproteinase regulates cellular invasiveness and survival in cutaneous epidermal cells. J. Invest. Dermatol.118, 573–581 (2002). CASPubMed Google Scholar
Ma, Z., Qin, H. & Benveniste, E. N. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-γ and IFN-β: critical role of STAT-1α. J. Immunol.167, 5150–5159 (2001). CASPubMed Google Scholar
Slaton, J. W. et al. Treatment with low-dose interferon-α restores the balance between matrix metalloproteinase-9 and E-cadherin expression in human transitional cell carcinoma of the bladder. Clin. Cancer Res.7, 2840–2853 (2001). CASPubMed Google Scholar
Mengshol, J. A., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull's-eye or missing the mark? Arthritis Rheum.46, 13–20 (2002). CASPubMed Google Scholar
Lal, A. et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res.62, 3335–3339 (2002). CASPubMed Google Scholar
Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest.109, 1551–1559 (2002). CASPubMedPubMed Central Google Scholar
McGaha, T. L., Phelps, R. G., Spiera, H. & Bona, C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-β-mediated Smad3 activation in fibroblasts. J. Invest. Dermatol.118, 461–470 (2002). CASPubMed Google Scholar
Shin, M., Yan, C. & Boyd, D. An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim. Biophys. Acta1589, 311–316 (2002). CASPubMed Google Scholar
Futamura, M. et al. Malolactomycin D, a potent inhibitor of transcription controlled by the Ras responsive element, inhibit Ras-mediated transformation activity with suppression of MMP-1 and MMP-9 in NIH3T3 cells. Oncogene20, 6724–6730 (2001). CASPubMed Google Scholar
Zhang, Y. et al. Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res.62, 3962–3965 (2002). CASPubMed Google Scholar
Karin, M. & Chang, L. AP-1-glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol.169, 447–451 (2001). CASPubMed Google Scholar
Sato, T. et al. Inhibition of activator protein-1 binding activity and phosphatidylinositol 3-kinase pathway by nobiletin, a polymethoxy flavonoid, results in augmentation of tissue inhibitor of metalloproteinases-1 production and suppression of production of matrix metalloproteinases-1 and -9 in human fibrosarcoma HT-1080 cells. Cancer Res.62, 1025–1029 (2002). CASPubMed Google Scholar
Mohan, R. et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem.275, 10405–10412 (2000). CASPubMed Google Scholar
Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res.59, 2615–2622 (1999). CASPubMed Google Scholar
Mix, K. S. et al. A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum.44, 1096–1104 (2001). CASPubMed Google Scholar
Pan, M. R., Chuang, L. Y. & Hung, W. C. Non-steroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 expression via repression of transcription in lung cancer cells. FEBS Lett.508, 365–368 (2001). CASPubMed Google Scholar
Ala-aho, R., Grenman, R., Seth, P. & Kahari, V. M. Adenoviral delivery of p53 gene suppresses expression of collagenase-3 (MMP-13) in squamous carcinoma cells. Oncogene21, 1187–1195 (2002). CASPubMed Google Scholar
Koul, D. et al. Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene20, 6669–6678 (2001). CASPubMed Google Scholar
Fenrick, R. et al. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Mol. Cell. Biol.20, 5828–5839 (2000). CASPubMedPubMed Central Google Scholar
Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J.18, 4645–4656 (1999). CASPubMedPubMed Central Google Scholar
Galvez, B. G., Matias-Roman, S., Albar, J. P., Sanchez-Madrid, F. & Arroyo, A. G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J. Biol. Chem.276, 37491–37500 (2001). CASPubMed Google Scholar
van Lent, P. L., Holthuysen, A. E., Sloetjes, A., Lubberts, E. & van den Berg, W. B. Local overexpression of adeno-viral IL-4 protects cartilage from metallo proteinase-induced destruction during immune complex-mediated arthritis by preventing activation of pro-MMPs. Osteoarthr. Cartilage10, 234–243 (2002). CAS Google Scholar
Annabi, B. et al. Green tea polyphenol (–)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim. Biophys. Acta1542, 209–220 (2002). CASPubMed Google Scholar
Bassi, D. E. et al. Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc. Natl Acad. Sci. USA98, 10326–10331 (2001). CASPubMedPubMed Central Google Scholar
Khatib, A. M. et al. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am. J. Pathol.160, 1921–1935 (2002). CASPubMedPubMed Central Google Scholar
Maquoi, E. et al. Inhibition of matrix metalloproteinase 2 maturation and HT1080 invasiveness by a synthetic furin inhibitor. FEBS Lett.424, 262–266 (1998). CASPubMed Google Scholar
Basset, P. et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature348, 699–704 (1990). CASPubMed Google Scholar
Bein, K. & Simons, M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem.275, 32167–32173 (2000). CASPubMed Google Scholar
Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA98, 12485–12490 (2001). CASPubMedPubMed Central Google Scholar
Yang, Z., Strickland, D. K. & Bornstein, P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J. Biol. Chem.276, 8403–8408 (2001). CASPubMed Google Scholar
Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res.60, 5410–5413 (2000). CASPubMed Google Scholar
Nakada, M. et al. Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-tes. Cancer Res.61, 8896–8902 (2001). CASPubMed Google Scholar
Bigg, H. F. et al. Tissue inhibitor of metalloproteinases-4 (TIMP-4) inhibits, but does not support, the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res.61, 3610–3618 (2001). CASPubMed Google Scholar
Butler, G. S. et al. The TIMP2 membrane type 1 metalloproteinase 'receptor' regulates the concentration and efficient activation of progelatinase A. A kinetic study. J. Biol. Chem.273, 871–880 (1998). CASPubMed Google Scholar
Sgadari, C. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nature Med.8, 225–232 (2002).Illustrates the feasibility of targeting proMMP activation for cancer therapy. The paper demonstrates that HIV-protease inhibitors are able to block proMMP-2 activation, and this effect is associated with the regression of sarcomas in HIV patients. CASPubMed Google Scholar
Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl Acad. Sci. USA95, 13120–13124 (1998). CASPubMedPubMed Central Google Scholar
Liang, J. S. et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nature Med.7, 1327–1331 (2001). CASPubMed Google Scholar
Kruger, A., Fata, J. E. & Khokha, R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood90, 1993–2000 (1997). CASPubMed Google Scholar
Martin, D. C. et al. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab. Invest.79, 225–234 (1999). CASPubMed Google Scholar
Brown, P. D. Clinical studies with matrix metalloproteinase inhibitors. APMIS107, 174–180 (1999). CASPubMed Google Scholar
Duivenvoorden, W. C. et al. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res.62, 1588–1591 (2002). CASPubMed Google Scholar
Cianfrocca, M. et al. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi's sarcoma: a phase I AIDS malignancy consortium study. J. Clin. Oncol.20, 153–159 (2002). CASPubMed Google Scholar
Boissier, S. et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res.60, 2949–2954 (2000). CASPubMed Google Scholar
Hidalgo, M. & Eckhardt, S. G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl Cancer Inst.93, 178–193 (2001). CASPubMed Google Scholar
Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C. & Buckels, J. A. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J. Clin. Oncol.19, 3447–3455 (2001). CASPubMed Google Scholar
Bramhall, S. R. et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and Marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br. J. Cancer87, 161–167 (2002). CASPubMedPubMed Central Google Scholar
Groves, M. D. et al. Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, Marimastat, in recurrent and progressive glioblastoma multiforme. J. Clin. Oncol20, 1383–1388 (2002).This work provides support to the hypothesis that MMPIs, in combination with other drugs, might improve the clinical outcome of cancer patients. CASPubMed Google Scholar
Zucker, S., Cao, J. & Chen, W. T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene19, 6642–6650 (2000). CASPubMed Google Scholar
Fingleton, B., Heppner Goss, K. J., Crawford, H. C. & Matrisian, L. M. Matrilysin in early stage intestinal tumorigenesis. APMIS107, 102–110 (1999). CASPubMed Google Scholar
Pozzi, A., LeVine, W. F. & Gardner, H. A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene22, 272–281 (2002). Google Scholar
Kruger, A. et al. Hydroxamate-type matrix metalloproteinase inhibitor promotes liver metastasis. Cancer Res.61, 1272–1275 (2001). CASPubMed Google Scholar
Maquoi, E. et al. Stimulation of matrix metalloproteinase-9 expression in human fibrosarcoma cells by synthetic matrix metalloproteinase inhibitors. Exp. Cell Res.275, 110–121 (2002). CASPubMed Google Scholar
Toth, M. et al. Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (membrane type 1)-MMP-dependent activation of pro-MMP-2. J. Biol. Chem.275, 41415–41423 (2000). CASPubMed Google Scholar
Vazquez, F. et al. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem.274, 23349–23357 (1999). CASPubMed Google Scholar
Gomis-Ruth, F. X. et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature389, 77–81 (1997). CASPubMed Google Scholar
Bode, W. et al. Structural properties of matrix metalloproteinases. Cell Mol. Life Sci.55, 639–652 (1999). CASPubMed Google Scholar
Turk, B. E, Huang, L. L., Piro, E. T. & Cantley, L. C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnol.19, 661–667 (2001). CAS Google Scholar
Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol.17, 768–774 (1999). CAS Google Scholar
Bernardo, M. M., Brown, S., Li, Z. H., Fridman, R. & Mobashery, S. Design, synthesis, and characterization of potent, slow-binding inhibitors that are selective for gelatinases. J. Biol. Chem.277, 11201–11207 (2002). CASPubMed Google Scholar
Garbisa, S. et al. Tumor gelatinases and invasion inhibited by the green tea flavonol epigallocatechin-3-gallate. Cancer91, 822–832 (2001). CASPubMed Google Scholar
Falardeau, P., Champagne, P., Poyet, P., Hariton, C. & Dupont, E. Neovastat, a naturally-occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin. Oncol.28, 620–625 (2001). CASPubMed Google Scholar
Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G. & Newby, A. C. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br. J. Cancer.79, 1347–1355 (1999). CASPubMedPubMed Central Google Scholar
Bello, L. et al. Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res.61, 8730–8736 (2001).Analysis of possibilities of disrupting non-catalytic activities of MMPs. CASPubMed Google Scholar
Du, L. et al. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics36, 22–28 (1996). CASPubMed Google Scholar
Pfeifer, A., Kessler, T., Silletti, S., Cheresh, D. A. & Verma, I. M. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc. Natl Acad. Sci. USA97, 12227–12232 (2000). CASPubMedPubMed Central Google Scholar
Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. & Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl Acad. Sci. USA98, 119–124 (2001). CASPubMed Google Scholar
Tam, E., Wu, Y. I., Butler, G. S., Stack, S. M. & Overall, C. M. Collagen binding properties of the MT1-MMP hemopexin C domain: the ectodomain of the 44-kDa autocatalytic fragment of MT1–MMP inhibits cell invasion by disrupting native type I collagen cleavage. J. Biol. Chem. 25 Jul 2002 [epub ahead of print].
Peng, K. W., Vile, R., Cosset, F. L. & Russell, S. Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther.6, 1552–1557 (1999).Together with references142and143, this paper is an example of novel strategies for cancer therapy that is based on exploiting MMP function. CASPubMed Google Scholar
Liu, S., Netzel-Arnett, S., Birkedal-Hansen, H. & Leppla, S. H. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res.60, 6061–6067 (2000). CASPubMed Google Scholar
Hayashi, M., Tomita, M. & Yoshizato, K. Interleukin-2-collagen chimeric protein which liberates interleukin-2 upon collagenolysis. Protein Eng.15, 429–436 (2002). CASPubMed Google Scholar
Lippman, S. M. & Matrisian, L. M. Protease inhibitors in oral carcinogenesis and chemoprevention. Clin. Cancer Res.6, 4599–4603 (2000). CASPubMed Google Scholar
Balbin, M. et al. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J. Biol. Chem.276, 10253–10262 (2001). CASPubMed Google Scholar
Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer2, 11–18 (2002).Excellent discussion of potential solutions to the problem of assessment ofin vivoinhibition of MMPs. CAS Google Scholar
Schatzkin, A. & Gail, M. The promise and peril of surrogate end points in cancer research. Nature Rev. Cancer2, 19–27 (2002). CAS Google Scholar
Gross, J. & Lapiere C. M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl Acad. Sci.USA48, 1014–1022 (1962).The first demonstration of an animal collagenase that is active at neutral pH, normal temperature and isotonicity: the starting point of studies on MMPs. CASPubMedPubMed Central Google Scholar
Hirohata, S. et al. Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J. Biol. Chem.277, 12182–12189 (2002). CASPubMed Google Scholar
Levitt, N. C. et al. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI270 (CGS27023A), in patients with advanced solid cancer. Clin. Cancer Res.7, 1912–1922 (2001). CASPubMed Google Scholar