Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme (original) (raw)

Abstract

The proteolytic enzyme stromelysin-1 is a member of the family of matrix metalloproteinases and is believed to play a role in pathological conditions such as arthritis and tumor invasion. Stromelysin-1 is synthesized as a pro-enzyme that is activated by removal of an N-terminal prodomain. The active enzyme contains a catalytic domain and a C-terminal hemopexin domain believed to participate in macromolecular substrate recognition. We have determined the three-dimensional structures of both a C-truncated form of the proenzyme and an inhibited complex of the catalytic domain by X-ray diffraction analysis. The catalytic core is very similar in the two forms and is similar to the homologous domain in fibroblast and neutrophil collagenases, as well as to the stromelysin structure determined by NMR. The prodomain is a separate folding unit containing three alpha-helices and an extended peptide that lies in the active site of the enzyme. Surprisingly, the amino-to-carboxyl direction of this peptide chain is opposite to that adopted by the inhibitor and by previously reported inhibitors of collagenase. Comparison of the active site of stromelysin with that of thermolysin reveals that most of the residues proposed to play significant roles in the enzymatic mechanism of thermolysin have equivalents in stromelysin, but that three residues implicated in the catalytic mechanism of thermolysin are not represented in stromelysin.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Gomis-Rüth F. X., Stöckler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 1993 Sep 27;331(1-2):134–140. doi: 10.1016/0014-5793(93)80312-i. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Reinemer P., Huber R., Kleine T., Schnierer S., Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263–1269. doi: 10.1002/j.1460-2075.1994.tb06378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borkakoti N., Winkler F. K., Williams D. H., D'Arcy A., Broadhurst M. J., Brown P. A., Johnson W. H., Murray E. J. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat Struct Biol. 1994 Feb;1(2):106–110. doi: 10.1038/nsb0294-106. [DOI] [PubMed] [Google Scholar]
  6. Chapman K. T., Kopka I. E., Durette P. L., Esser C. K., Lanza T. J., Izquierdo-Martin M., Niedzwiecki L., Chang B., Harrison R. K., Kuo D. W. Inhibition of matrix metalloproteinases by N-carboxyalkyl peptides. J Med Chem. 1993 Dec 24;36(26):4293–4301. doi: 10.1021/jm00078a019. [DOI] [PubMed] [Google Scholar]
  7. Chin J. R., Murphy G., Werb Z. Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem. 1985 Oct 5;260(22):12367–12376. [PubMed] [Google Scholar]
  8. Crabbe T., Zucker S., Cockett M. I., Willenbrock F., Tickle S., O'Connell J. P., Scothern J. M., Murphy G., Docherty A. J. Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1. Biochemistry. 1994 May 31;33(21):6684–6690. doi: 10.1021/bi00187a039. [DOI] [PubMed] [Google Scholar]
  9. Docherty A. J., O'Connell J., Crabbe T., Angal S., Murphy G. The matrix metalloproteinases and their natural inhibitors: prospects for treating degenerative tissue diseases. Trends Biotechnol. 1992 Jun;10(6):200–207. doi: 10.1016/0167-7799(92)90214-g. [DOI] [PubMed] [Google Scholar]
  10. Freimark B. D., Feeser W. S., Rosenfeld S. A. Multiple sites of the propeptide region of human stromelysin-1 are required for maintaining a latent form of the enzyme. J Biol Chem. 1994 Oct 28;269(43):26982–26987. [PubMed] [Google Scholar]
  11. Galloway W. A., Murphy G., Sandy J. D., Gavrilovic J., Cawston T. E., Reynolds J. J. Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem J. 1983 Mar 1;209(3):741–752. doi: 10.1042/bj2090741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gomis-Rüth F. X., Kress L. F., Kellermann J., Mayr I., Lee X., Huber R., Bode W. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J Mol Biol. 1994 Jun 17;239(4):513–544. doi: 10.1006/jmbi.1994.1392. [DOI] [PubMed] [Google Scholar]
  13. Gooley P. R., Johnson B. A., Marcy A. I., Cuca G. C., Salowe S. P., Hagmann W. K., Esser C. K., Springer J. P. Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR. Biochemistry. 1993 Dec 7;32(48):13098–13108. doi: 10.1021/bi00211a020. [DOI] [PubMed] [Google Scholar]
  14. Gooley P. R., O'Connell J. F., Marcy A. I., Cuca G. C., Salowe S. P., Bush B. L., Hermes J. D., Esser C. K., Hagmann W. K., Springer J. P. The NMR structure of the inhibited catalytic domain of human stromelysin-1. Nat Struct Biol. 1994 Feb;1(2):111–118. doi: 10.1038/nsb0294-111. [DOI] [PubMed] [Google Scholar]
  15. Goudreau N., Cornille F., Duchesne M., Parker F., Tocqué B., Garbay C., Roques B. P. NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a proline-rich peptide from Sos. Nat Struct Biol. 1994 Dec;1(12):898–907. doi: 10.1038/nsb1294-898. [DOI] [PubMed] [Google Scholar]
  16. Gowen M., Wood D. D., Ihrie E. J., Meats J. E., Russell R. G. Stimulation by human interleukin 1 of cartilage breakdown and production of collagenase and proteoglycanase by human chondrocytes but not by human osteoblasts in vitro. Biochim Biophys Acta. 1984 Feb 14;797(2):186–193. doi: 10.1016/0304-4165(84)90121-1. [DOI] [PubMed] [Google Scholar]
  17. HE C. S., Wilhelm S. M., Pentland A. P., Marmer B. L., Grant G. A., Eisen A. Z., Goldberg G. I. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2632–2636. doi: 10.1073/pnas.86.8.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knäuper V., Wilhelm S. M., Seperack P. K., DeClerck Y. A., Langley K. E., Osthues A., Tschesche H. Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem J. 1993 Oct 15;295(Pt 2):581–586. doi: 10.1042/bj2950581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lovejoy B., Cleasby A., Hassell A. M., Longley K., Luther M. A., Weigl D., McGeehan G., McElroy A. B., Drewry D., Lambert M. H. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science. 1994 Jan 21;263(5145):375–377. doi: 10.1126/science.8278810. [DOI] [PubMed] [Google Scholar]
  20. Marcy A. I., Eiberger L. L., Harrison R., Chan H. K., Hutchinson N. I., Hagmann W. K., Cameron P. M., Boulton D. A., Hermes J. D. Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form. Biochemistry. 1991 Jul 2;30(26):6476–6483. doi: 10.1021/bi00240a018. [DOI] [PubMed] [Google Scholar]
  21. Murphy G. J., Murphy G., Reynolds J. J. The origin of matrix metalloproteinases and their familial relationships. FEBS Lett. 1991 Sep 2;289(1):4–7. doi: 10.1016/0014-5793(91)80895-a. [DOI] [PubMed] [Google Scholar]
  22. Murphy G., Cockett M. I., Stephens P. E., Smith B. J., Docherty A. J. Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J. 1987 Nov 15;248(1):265–268. doi: 10.1042/bj2480265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murphy G., McAlpine C. G., Poll C. T., Reynolds J. J. Purification and characterization of a bone metalloproteinase that degrades gelatin and types IV and V collagen. Biochim Biophys Acta. 1985 Sep 20;831(1):49–58. doi: 10.1016/0167-4838(85)90148-7. [DOI] [PubMed] [Google Scholar]
  24. Murrell G. A., Jang D., Williams R. J. Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun. 1995 Jan 5;206(1):15–21. doi: 10.1006/bbrc.1995.1003. [DOI] [PubMed] [Google Scholar]
  25. Nagase H., Enghild J. J., Suzuki K., Salvesen G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry. 1990 Jun 19;29(24):5783–5789. doi: 10.1021/bi00476a020. [DOI] [PubMed] [Google Scholar]
  26. Nagase H., Suzuki K., Enghild J. J., Salvesen G. Stepwise activation mechanisms of the precursors of matrix metalloproteinases 1 (tissue collagenase) and 3 (stromelysin). Biomed Biochim Acta. 1991;50(4-6):749–754. [PubMed] [Google Scholar]
  27. Ogata Y., Enghild J. J., Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992 Feb 25;267(6):3581–3584. [PubMed] [Google Scholar]
  28. Okada Y., Harris E. D., Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J. 1988 Sep 15;254(3):731–741. doi: 10.1042/bj2540731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Okada Y., Konomi H., Yada T., Kimata K., Nagase H. Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells. FEBS Lett. 1989 Feb 27;244(2):473–476. doi: 10.1016/0014-5793(89)80586-1. [DOI] [PubMed] [Google Scholar]
  30. Okada Y., Nakanishi I. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 ('gelatinase') by human neutrophil elastase and cathepsin G. FEBS Lett. 1989 Jun 5;249(2):353–356. doi: 10.1016/0014-5793(89)80657-x. [DOI] [PubMed] [Google Scholar]
  31. Park A. J., Matrisian L. M., Kells A. F., Pearson R., Yuan Z. Y., Navre M. Mutational analysis of the transin (rat stromelysin) autoinhibitor region demonstrates a role for residues surrounding the "cysteine switch". J Biol Chem. 1991 Jan 25;266(3):1584–1590. [PubMed] [Google Scholar]
  32. Reinemer P., Grams F., Huber R., Kleine T., Schnierer S., Piper M., Tschesche H., Bode W. Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study. FEBS Lett. 1994 Jan 31;338(2):227–233. doi: 10.1016/0014-5793(94)80370-6. [DOI] [PubMed] [Google Scholar]
  33. Salowe S. P., Marcy A. I., Cuca G. C., Smith C. K., Kopka I. E., Hagmann W. K., Hermes J. D. Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme. Biochemistry. 1992 May 19;31(19):4535–4540. doi: 10.1021/bi00134a001. [DOI] [PubMed] [Google Scholar]
  34. Sanchez-Lopez R., Nicholson R., Gesnel M. C., Matrisian L. M., Breathnach R. Structure-function relationships in the collagenase family member transin. J Biol Chem. 1988 Aug 25;263(24):11892–11899. [PubMed] [Google Scholar]
  35. Saus J., Quinones S., Otani Y., Nagase H., Harris E. D., Jr, Kurkinen M. The complete primary structure of human matrix metalloproteinase-3. Identity with stromelysin. J Biol Chem. 1988 May 15;263(14):6742–6745. [PubMed] [Google Scholar]
  36. Schmid T. M., Mayne R., Jeffrey J. J., Linsenmayer T. F. Type X collagen contains two cleavage sites for a vertebrate collagenase. J Biol Chem. 1986 Mar 25;261(9):4184–4189. [PubMed] [Google Scholar]
  37. Seltzer J. L., Eisen A. Z., Bauer E. A., Morris N. P., Glanville R. W., Burgeson R. E. Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin. J Biol Chem. 1989 Mar 5;264(7):3822–3826. [PubMed] [Google Scholar]
  38. Springman E. B., Angleton E. L., Birkedal-Hansen H., Van Wart H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):364–368. doi: 10.1073/pnas.87.1.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spurlino J. C., Smallwood A. M., Carlton D. D., Banks T. M., Vavra K. J., Johnson J. S., Cook E. R., Falvo J., Wahl R. C., Pulvino T. A. 1.56 A structure of mature truncated human fibroblast collagenase. Proteins. 1994 Jun;19(2):98–109. doi: 10.1002/prot.340190203. [DOI] [PubMed] [Google Scholar]
  40. Stams T., Spurlino J. C., Smith D. L., Wahl R. C., Ho T. F., Qoronfleh M. W., Banks T. M., Rubin B. Structure of human neutrophil collagenase reveals large S1' specificity pocket. Nat Struct Biol. 1994 Feb;1(2):119–123. doi: 10.1038/nsb0294-119. [DOI] [PubMed] [Google Scholar]
  41. Terasawa H., Kohda D., Hatanaka H., Tsuchiya S., Ogura K., Nagata K., Ishii S., Mandiyan V., Ullrich A., Schlessinger J. Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Nat Struct Biol. 1994 Dec;1(12):891–897. doi: 10.1038/nsb1294-891. [DOI] [PubMed] [Google Scholar]
  42. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Welgus H. G., Jeffrey J. J., Eisen A. Z. The collagen substrate specificity of human skin fibroblast collagenase. J Biol Chem. 1981 Sep 25;256(18):9511–9515. [PubMed] [Google Scholar]
  44. Ye Q. Z., Johnson L. L., Nordan I., Hupe D., Hupe L. A recombinant human stromelysin catalytic domain identifying tryptophan derivatives as human stromelysin inhibitors. J Med Chem. 1994 Jan 7;37(1):206–209. doi: 10.1021/jm00027a027. [DOI] [PubMed] [Google Scholar]