Alter, B. P. Fanconi's anemia and malignancies. Am. J. Hematol.53, 99–110 (1996). CASPubMed Google Scholar
Rosenberg, P. S., Greene, M. H. & Alter, B. P. Cancer incidence in persons with Fanconi's anemia. Blood 5 Sept 2002 (doi:10.1182/blood-2002-05–1498).
D'Andrea, A. D. & Grompe, M. Molecular biology of Fanconi anemia: implications for diagnosis and therapy. Blood90, 1725–1736 (1997). CASPubMed Google Scholar
Kubbies, M., Schindler, D., Hoehn, H., Schinzel, A. & Rabinovitch, P. S. Endogenous blockage and delay of the chromosome cycle despite normal recruitment and growth phase explain poor proliferation and frequent edomitosis in Fanconi anemia cells. Am. J. Hum. Genet.37, 1022–1030 (1985). CASPubMedPubMed Central Google Scholar
Kaiser, T. N. et al. Flow cytometric characterization of the response of Fanconi's anemia cells to mitomycin C treatment. Cytometry2, 291–297 (1982). CASPubMed Google Scholar
Akkari, Y. M. et al. The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. Mol. Genet. Metab.74, 403–412 (2001). CASPubMed Google Scholar
Auerbach, A. D. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol.21, 731–733 (1993). CASPubMed Google Scholar
Waisfisz, Q. et al. Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nature Genet.22, 379–383 (1999). CASPubMed Google Scholar
Pulsipher, M. et al. Subtyping analysis of Fanconi anemia by immunoblotting and retroviral gene transfer. Mol. Med.4, 468–479 (1998). CASPubMedPubMed Central Google Scholar
Hanenberg, H. et al. Phenotypic correction of primary Fanconi anemia T cells with retroviral vectors as a diagnostic tool. Exp. Hematol.30, 410–420 (2002). CASPubMed Google Scholar
Guinan, E. C., Lopez, K. D., Huhn, R. D., Felser, J. M. & Nathan, D. G. Evaluation of granulocyte–macrophage colony-stimulating factor for treatment of pancytopenia in children with fanconi anemia. J. Pediatr.124, 144–150 (1994). CASPubMed Google Scholar
Davies, S. M. et al. Unrelated donor bone marrow transplantation for Fanconi anemia. Bone Marrow Transplant.17, 43–47 (1996). CASPubMed Google Scholar
Gluckman, E. et al. Transplantation of umbilical cord blood in Fanconi's anemia. Nouvelle Revue Francaise d Hematologie32, 423–425 (1990). CASPubMed Google Scholar
Wagner, J. E. Umbilical cord blood stem cell transplantation. Am. J. Pediatr. Hematol. Oncol.15, 169–174 (1993). CASPubMed Google Scholar
Yoshimasu, T. et al. Prompt and durable hematopoietic reconstitution by unrelated cord blood transplantation in a child with Fanconi anemia. Bone Marrow Transplant.27, 767–769 (2001). CASPubMed Google Scholar
Verlinsky, Y., Rechitsky, S., Schoolcraft, W., Strom, C. & Kuliev, A. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA285, 3130–3133 (2001). CASPubMed Google Scholar
Liu, J. M. et al. Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Hum. Gene Ther.10, 2337–2346 (1999). CASPubMed Google Scholar
Liu, J. M. et al. Retroviral mediated gene transfer of the Fanconi anemia complementation group C gene to hematopoietic progenitors of group C patients. Hum. Gene Ther.8, 1715–1730 (1997). CASPubMed Google Scholar
Strathdee, C. A., Gavish, H., Shannon, W. R. & Buchwald, M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature356, 763–767 (1992). Describes the first successful cloning of a Fanconi anemia cDNA, by functional complementation of an FA-C lymphoblast line. A similar strategy was subsequently used for the cloning of the FANCA, FANCG, FANCF and FANCE cDNAs. CASPubMed Google Scholar
Lo Ten Foe, J. R. et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nature Genet.14, 320–323 (1996). CASPubMed Google Scholar
de Winter, J. P. et al. Isolation of a cDNA representing the fanconi anemia complementation group E gene. Am. J. Hum. Genet.67, 1306–1308 (2000). CASPubMedPubMed Central Google Scholar
de Winter, J. P. et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nature Genet.24, 15–16 (2000). CASPubMed Google Scholar
de Winter, J. P. et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nature Genet.20, 281–283 (1998). CASPubMed Google Scholar
Positional cloning of the Fanconi anaemia group A gene. The Fanconi anaemia/breast cancer consortium. Nature Genet.14, 324–328 (1996).
Timmers, C. et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell7, 241–248 (2001). Describes the position cloning of the Fanconi anaemia gene,FANCD2. This paper also shows that theFANCD2cDNA can functionally complement the mitomycin C sensitivity of FA-D2 cells. CASPubMed Google Scholar
Whitney, M. A., Jakobs, P., Kaback, M., Moses, R. E. & Grompe, M. The Ashkenazi Jewish Fanconi anemia mutation: incidence among patients and carrier frequency in the at-risk population. Hum. Mutat.3, 339–341 (1994). CASPubMed Google Scholar
Verlander, P. C. et al. Carrier frequency of the IVS4 + 4 A→T mutation of the Fanconi anemia gene FAC in the Ashkenazi Jewish population. Blood86, 4034–4038 (1995). CASPubMed Google Scholar
Faivre, L. et al. Association of complementation group and mutation type with clinical outcome in fanconi anemia. Blood96, 4064–4070 (2000). CASPubMed Google Scholar
Gillio, A. P., Verlander, P. C., Batish, S. D., Giampietro, P. F. & Auerbach, A. D. Phenotypic consequences of mutations in the Fanconi anemia FAC gene: an International Fanconi Anemia Registry study. Blood90, 105–110 (1997). CASPubMed Google Scholar
Liu, T. et al. Cloning and characterization of the zebrafish homologue of the Fanconi anemia protein, FANCD2. Blood100, 43a (2002). Google Scholar
D'Andrea, A. D. Fanconi anaemia forges a novel pathway. Nature Genet.14, 240–242 (1996). CASPubMed Google Scholar
Carreau, M. & Buchwald, M. Fanconi's anemia: what have we learned from the genes so far? Mol. Med. Today4, 201–206 (1998). CASPubMed Google Scholar
Kupfer, G. M., Naf, D., Suliman, A., Pulsipher, M. & D'Andrea, A. D. The Fanconi anaemia proteins, FAA and FAC, interact to form a nuclear complex. Nature Genet.17, 487–490 (1997). CASPubMed Google Scholar
Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A. D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell Biol.19, 4866–4873 (1999). CASPubMedPubMed Central Google Scholar
Yamashita, T. et al. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation. Proc. Natl Acad. Sci. USA95, 13085–13090 (1998). CASPubMedPubMed Central Google Scholar
de Winter, J. P. et al. The fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet.9, 2665–2674 (2000). Shows that the FANCC, FANCG, FANCA and FANCF proteins accumulate as a complex in the nucleus of normal human cells, supporting the concept of an FA pathway. CASPubMed Google Scholar
Medhurst, A. L., Huber, P. A., Waisfisz, Q., de Winter, J. P. & Mathew, C. G. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum. Mol. Genet.10, 423–429 (2001). CASPubMed Google Scholar
Garcia-Higuera, I., Kuang, Y., Denham, J. & D'Andrea, A. D. The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the fanconi anemia complex. Blood96, 3224–3230 (2000). CASPubMed Google Scholar
Qiao, F., Moss, A. & Kupfer, G. M. Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. J. Biol. Chem.276, 23391–23396 (2001). CASPubMed Google Scholar
Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J.21, 3414–3423 (2002). Shows that theFANCEgene is a component of the FA complex, is required for the accumulation of FANCC in the nucleus, and provides a functional connection between the FA complex and FANCD2. CASPubMedPubMed Central Google Scholar
Nakanishi, K. et al. Functional analysis of patient-derived mutations in the Fanconi anemia gene, FANCG/XRCC9. Exp. Hematol.29, 842–849 (2001). CASPubMed Google Scholar
Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell7, 249–262 (2001). Shows that six cloned FA proteins (A, C, D2, E, F and G) interact in a common pathway, resulting in the monoubiquitylation of FANCD2 and its targeting to BRCA1-containing nuclear foci. CASPubMed Google Scholar
Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood100, 2414–2420 (2002). CASPubMed Google Scholar
Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev.14, 927–939 (2000). CASPubMedPubMed Central Google Scholar
Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA96, 11364–11369 (1999). CASPubMedPubMed Central Google Scholar
Patel, K. J. et al. Involvement of Brca2 in DNA repair. Mol. Cell1, 347–357 (1998). CASPubMed Google Scholar
Kraakman-van der Zwet, M. et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol.22, 669–679 (2002). CASPubMedPubMed Central Google Scholar
McAllister, K. A. et al. Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer Res.62, 990–994 (2002). CASPubMed Google Scholar
Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science297, 606–609 (2002). Shows that some rare FA patients have biallelic inactivation of theBRCA2gene. Cells from FA-D1 cells can be functionally complemented with theBRCA2gene. CASPubMed Google Scholar
Digweed, M. et al. Attenuation of the formation of DNA-repair foci containing RAD51 in Fanconi anaemia. Carcinogenesis23, 1121–1126 (2002). CASPubMed Google Scholar
Folias, A. et al. BRCA1 interacts directly with the Fanconi anemia protein, FANCA. Hum. Mol. Genet.11, 2591–2597 (2002). CASPubMed Google Scholar
Margossian, S. et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with damaged chromatin. Blood100, 9a (2002). Google Scholar
D'Andrea, A. D. & Pellman, D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol.33, 337–352 (1998). CASPubMed Google Scholar
Gatti, R. A. The inherited basis of human radiosensitivity. Acta Oncol.40, 702–711 (2001). CASPubMed Google Scholar
Alter, B. P. Radiosensitivity in Fanconi's anemia patients. Radiother. Oncol.62, 345–347 (2002). PubMed Google Scholar
Khanna, K. et al. in DNA Damage and Repair (eds Nickoloff, J. A. & Hoekstra, M.) 395–442 (Humana Press, Totowa, New Jersey, 1999). Google Scholar
Banin, S. et al. Enhance phosphorylation of p53 by ATM in response to DNA damage. Science281, 1674–1677 (1998). CASPubMed Google Scholar
Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science281, 1677–1679 (1998). CASPubMed Google Scholar
Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature404, 613–617 (2000). CASPubMed Google Scholar
Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet.25, 115–119 (2000). CASPubMed Google Scholar
Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of Brca1 in the DNA damage response to double-strand breaks. Science286, 1162–1166 (1999). CASPubMed Google Scholar
Taniguchi, T. et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell109, 459–472 (2002). Shows that the FANCD2 protein undergoes two discrete post-translational modifications — an ATM-dependent phosphorylation and an FA-complex-dependent monoubiquitylation. Each modification activates a different cellular function. CASPubMed Google Scholar
Xu, B., Kim, S. & Kastan, M. B. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol. Cell. Biol.21, 3445–3450 (2001). CASPubMedPubMed Central Google Scholar
Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev.11, 71–77 (2001). CASPubMed Google Scholar
Carney, J. P. Chromosomal breakage syndromes. Curr. Opin. Immunol.11, 443–447 (1999). CASPubMed Google Scholar
Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol.12, 293–296 (2000). CASPubMed Google Scholar
Bressan, D. A., Baxter, B. K. & Petrini, J. H. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol.19, 7681–7687 (1999). CASPubMedPubMed Central Google Scholar
Wu, X. et al. Independence of R/M/N focus formation and the presence of intact BRCA1. Science289, 11 (2000). CASPubMed Google Scholar
Resnick, I. B. et al. Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J. Pediatr.140, 355–361 (2002). PubMed Google Scholar
Nakanishi, K. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biol.4, 913–920 (2002). Shows thatNBS1−/−cells have mitomycin C sensitivity, similar to the defect observed in FA cells. Moreover, NBS1 and FANCD2 interact in an S-phase checkpoint function and in repair of DNA crosslinks. CASPubMed Google Scholar
Shimamura, A. et al. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood 29 Aug 2002 [epub ahead of print].
Chen, M. et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nature Genet.12, 448–451 (1996). CASPubMed Google Scholar
Whitney, M. A. et al. Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood88, 49–58 (1996). Describes a knockout of the murineFanccgene. Primary cells isolated from the knockout animal have chromosome instability and γ-interferon hypersensitivity. CASPubMed Google Scholar
Noll, M. et al. Fanconi anemia group A and C double-mutant mice. Functional evidence for a multi-protein Fanconi anemia complex. Exp. Hematol.30, 679–688 (2002). CASPubMed Google Scholar
Rio, P. et al. In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice. Blood100, 2032–2039 (2002). CASPubMed Google Scholar
Yang, Y. et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood98, 3435–3440 (2001). CASPubMed Google Scholar
Koomen, M. et al. Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. Hum. Mol. Genet.11, 273–281 (2002). CASPubMed Google Scholar
Haneline, L. S. et al. Loss of FancC function results in decreased hematopoietic stem cell repopulating ability. Blood94, 1–8 (1999). CASPubMed Google Scholar
Haneline, L. S. et al. Multiple inhibitory cytokines induce deregulated progenitor growth and apoptosis in hematopoietic cells from Fac−/− mice. Blood91, 4092–4098 (1998). CASPubMed Google Scholar
Rathbun, R. K. et al. Inactivation of the Fanconi anemia group C gene augments interferon-gamma-induced apoptotic responses in hematopoietic cells. Blood90, 974–985 (1997). CASPubMed Google Scholar
Rathbun, R. K. et al. Interferon-gamma-induced apoptotic responses of fanconi anemia group C hematopoietic progenitor cells involve caspase 8-dependent activation of caspase 3 family members. Blood96, 4204–4211 (2000). CASPubMed Google Scholar
Carreau, M. et al. Bone marrow failure in the Fanconi anemia group C mouse model after DNA damage. Blood91, 2737–2744 (1998). CASPubMed Google Scholar
Noll, M., Bateman, R. L., D'Andrea, A. D. & Grompe, M. Preclinical protocol for in vivo selection of hematopoietic stem cells corrected by gene therapy in Fanconi anemia group C. Mol. Ther.3, 14–23 (2001). CASPubMed Google Scholar
Battaile, K. P. et al. In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia. Blood94, 2151–2158 (1999). CASPubMed Google Scholar
Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet.17, 423–430 (1997). CASPubMed Google Scholar
Ludwig, T., Fisher, P., Murty, V. & Efstratiadis, A. Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene20, 3937–3948 (2001). CASPubMed Google Scholar
Ludwig, T., Chapman, D. L., Papaioannou, V. E. & Efstratiadis, A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev.11, 1226–1241 (1997). CASPubMed Google Scholar
Shu, Z., Smith, S., Wang, L., Rice, M. C. & Kmiec, E. B. Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can be partially rescued in a p53(−/−) background. Mol. Cell. Biol.19, 8686–8693 (1999). CASPubMedPubMed Central Google Scholar
Liu, C. Y., Flesken-Nikitin, A., Li, S., Zeng, Y. & Lee, W. H. Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev.10, 1835–1843 (1996). CASPubMed Google Scholar
Shen, S. X. et al. A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene17, 3115–3124 (1998). CASPubMed Google Scholar
Painter, R. B. Radioresistant DNA synthesis: an intrinsic feature of ataxia telangiectasia. Mutat. Res.84, 183–190 (1981). CASPubMed Google Scholar
Centurion, S. A., Kuo, H. R. & Lambert, W. C. Damage-resistant DNA synthesis in fanconi anemia cells treated with a DNA cross-linking agent. Exp. Cell Res.260, 216–221 (2000). CASPubMed Google Scholar
Sala-Trepat, M. et al. Arrest of S-phase progression is impaired in fanconi anemia cells. Exp. Cell Res.260, 208–215 (2000). CASPubMed Google Scholar
Akkari, Y. M., Bateman, R. L., Reifsteck, C. A., Olson, S. B. & Grompe, M. DNA replication is required to elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol. Cell. Biol.20, 8283–8289 (2000). Shows that DNA crosslinks cause a cellular arrest in S phase. The data indicate that crosslink repair is mediated by homologous recombination repair in S phase. CASPubMedPubMed Central Google Scholar
Escarceller, M., Rousset, S., Moustacchi, E. & Papadopoulo, D. The fidelity of double strand breaks processing is impaired in complementation groups B and D of Fanconi anemia, a genetic instability syndrome. Somatic Cell Mol. Genet.23, 401–411 (1997). CAS Google Scholar
Lundberg, R., Mavinakere, M. & Campbell, C. Deficient DNA end joining activity in extracts from fanconi anemia fibroblasts. J. Biol. Chem.276, 9543–9549 (2001). CASPubMed Google Scholar
Escarceller, M. et al. Fanconi anemia C gene product plays a role in the fidelity of blunt DNA end-joining. J. Mol. Biol.279, 375–385 (1998). CASPubMed Google Scholar
Scully, R., Puget, N. & Vlasakova, K. DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene19, 6176–6183 (2000). CASPubMed Google Scholar
Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell7, 263–272 (2001). CASPubMed Google Scholar
Tutt, A. et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J.20, 4704–4716 (2001). Shows thatBrca1/Fancd1−/−cells have an underlying defect in homologous recombination repair and in sister-chromatid exchange. CASPubMedPubMed Central Google Scholar
Larminat, F., Germanier, M., Papouli, E. & Defais, M. Deficiency in BRCA2 leads to increase in non-conservative homologous recombination. Oncogene21, 5188–5192 (2002). CASPubMed Google Scholar
Wong, A. K., Pero, R., Ormonde, P. A., Tavtigian, S. V. & Bartel, P. L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene Brca2. J. Biol. Chem.272, 31941–31944 (1997). CASPubMed Google Scholar
Wilson, J. H. & Elledge, S. J. Cancer: BRCA2 enters the fray. Science297, 1822–1823 (2002). CASPubMed Google Scholar
Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science297, 1837–1848 (2002). Describes the first crystal structure for a domain of a Fanconi anaemia protein, BRCA2/FANCD2. This paper also shows that the carboxyl terminus of the protein has a regulated interaction with DNA. CASPubMed Google Scholar
Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell90, 425–435 (1997). CASPubMed Google Scholar
Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet.33, 603–754 (1999). CASPubMed Google Scholar
Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell4, 511–518 (1999). CASPubMed Google Scholar
Moynahan, M. E., Cui, T. Y. & Jasin, M. Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res.61, 4842–4850 (2001). CASPubMed Google Scholar
Meyn, S., D'Andrea, A., Grompe, M. & Wang, W. The involvement of Fanconi Anemia proteins in homologous genetic recombination. Am. J. Hum. Genet.69, 750 (2001). Google Scholar
Thyagarajan, B. & Campbell, C. Elevated homologous recombination activity in fanconi anemia fibroblasts. J. Biol. Chem.272, 23328–23333 (1997). CASPubMed Google Scholar
Papadopoulo, D., Guillouf, C., Mohrenweiser, H. & Moustacchi, E. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc. Natl Acad. Sci. USA87, 8383–8387 (1990). CASPubMedPubMed Central Google Scholar
Sala-Trepat, M., Boyse, J., Richard, P., Papadopoulo, D. & Moustacchi, E. Frequencies of HPRT lymphocytes and glycophorin A variants erythrocytes in Fanconi anemia patients, their parents and control donors. Mut. Res.289, 115–126 (1993). CAS Google Scholar
Laquerbe, A., Sala-Trepat, M., Vives, C., Escarceller, M. & Papadopoulo, D. Molecular spectra of HPRT deletion mutations in circulating T-lymphocytes in Fanconi anemia patients. Mutat. Res.431, 341–350 (1999). CASPubMed Google Scholar
McHugh, P. J., Spanswick, V. J. & Hartley, J. A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol.2, 483–490 (2001). CASPubMed Google Scholar
Wang, X. et al. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol. Cell. Biol.21, 713–720 (2001). CASPubMedPubMed Central Google Scholar
Bessho, T., Mu, D. & Sancar, A. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5′ to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol. Cell. Biol.17, 6822–6830 (1997). CASPubMedPubMed Central Google Scholar
De Silva, I. U., McHugh, P. J., Clingen, P. H. & Hartley, J. A. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell. Biol.20, 7980–7990 (2000). CASPubMedPubMed Central Google Scholar