Obesity, inflammation, and atherosclerosis (original) (raw)
Rosamond, W. et al. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation117, e25–e146 (2008). PubMed Google Scholar
Olshansky, S. J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med.352, 1138–1145 (2005). ArticleCASPubMed Google Scholar
Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part V: the discovery of the statins and the end of the controversy. J. Lipid Res.47, 1339–1351 (2006). ArticleCASPubMed Google Scholar
Steinberg, D. The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part IV: the 1984 coronary primary prevention trial ends it—almost. J. Lipid Res.47, 1–14 (2006). ArticleCASPubMed Google Scholar
Li, H., Cybulsky, M. I., Gimbrone, M. A. Jr & Libby, P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb.13, 197–204 (1993). ArticlePubMed Google Scholar
Turinsky, J., O'Sullivan, D. M. & Bayly, B. P. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J. Biol. Chem.265, 16880–16885 (1990). CASPubMed Google Scholar
Schenk S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest.118, 2992–3002 (2008). ArticleCASPubMedPubMed Central Google Scholar
Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J. Lipid Res.45, 1583–1593 (2004). ArticleCASPubMed Google Scholar
Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part II: the early evidence linking hypercholesterolemia to coronary disease in humans. J. Lipid Res.46, 179–190 (2005). ArticleCASPubMed Google Scholar
Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis: an interpretive history of the cholesterol controversy, part III: mechanistically defining the role of hyperlipidemia. J. Lipid Res.46, 2037–2051 (2005). ArticleCASPubMed Google Scholar
Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell2, 275–281 (1998). ArticleCASPubMed Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). ArticleCASPubMed Google Scholar
Veillard, N. R. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res.94, 253–261 (2004). ArticleCASPubMed Google Scholar
Braunersreuther, V. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc Biol.27, 373–379 (2007). ArticleCASPubMed Google Scholar
Lesnik P, Haskell, C. A. & Charo, I. F. Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J. Clin. Invest.111, 333–340 (2003). ArticleCASPubMedPubMed Central Google Scholar
Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest.117, 195–205 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest.117, 185–194 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science259, 87–91 (1993). ArticleCASPubMed Google Scholar
Hotamisligil, G. S., Murray, D. L., Choy, L. N. & Spiegelman, B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl Acad. Sci. USA91, 4854–4858 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rocha, V. Z. & Libby, P. The multiple facets of the fat tissue. Thyroid18, 175–183 (2008). ArticlePubMed Google Scholar
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112, 1821–1830 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117, 175–184 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest.116, 1494–1505 (2006). ArticleCASPubMedPubMed Central Google Scholar
Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest.116, 115–124 (2006). ArticleCASPubMed Google Scholar
Inouye, K. E. et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes56, 2242–2250 (2007). ArticleCASPubMed Google Scholar
Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Macrophage chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes57, 1254–1261 (2008). ArticleCASPubMed Google Scholar
Odegaard, J. I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature447, 1116–1120 (2007) (2007). ArticleCASPubMedPubMed Central Google Scholar
Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell. Metab.7, 485–495 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol.6, 508–519 (2006). ArticleCASPubMed Google Scholar
Mach, F. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest.104, 1041–1050 (1999). ArticleCASPubMedPubMed Central Google Scholar
Heller, E. A. et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation113, 2301–2312 (2006). ArticleCASPubMed Google Scholar
van Wanrooij, E. J. et al. CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol.28, 251–257 (2008). ArticleCASPubMed Google Scholar
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352, 1685–1695 (2005). ArticleCASPubMed Google Scholar
Frostegard, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis145, 33–43 (1999). ArticleCASPubMed Google Scholar
Friesel, R., Komoriya, A. & Maciag, T. Inhibition of endothelial cell proliferation by gamma-interferon. J. Cell Biol.104, 689–696 (1987). ArticleCASPubMed Google Scholar
Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med.170, 1595–1608 (1989). ArticleCASPubMed Google Scholar
Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb.11, 1223–1230 (1991). ArticleCASPubMed Google Scholar
Buono, C. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol.23, 454–460 (2003). ArticleCASPubMed Google Scholar
Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol.163, 1117–1125 (2003). ArticleCASPubMedPubMed Central Google Scholar
King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol.22, 456–461 (2002). ArticleCASPubMed Google Scholar
Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA92, 3893–3897 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kol, A., Sukhova, G. K., Lichtman, A. H. & Libby, P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation98, 300–307 (1998). ArticleCASPubMed Google Scholar
O'Connor, C. M. et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA290, 1459–1466 (2003). ArticleCASPubMed Google Scholar
Grayston, J. T. et al. Azithromycin for the secondary prevention of coronary events. N. Engl. J. Med.352, 1637–1645 (2005). ArticleCASPubMed Google Scholar
Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med.9, 10–17 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res.89, 930–934 (2001). ArticleCASPubMed Google Scholar
Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med.12, 178–180 (2006). ArticleCASPubMed Google Scholar
Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation115, 1029–1038 (2007). ArticleCASPubMed Google Scholar
Rocha, V. Z. et al. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res.103, 467–476 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol.28, 1304–1310 (2008). ArticleCASPubMed Google Scholar
Clarke, M. C. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med.12, 1075–1080 (2006). ArticleCASPubMed Google Scholar
Geng, Y. J. & Libby, P. Progression of atheroma: a struggle between death and procreation. Arterioscler. Thromb. Vasc. Biol.22, 1370–1380 (2002). ArticleCASPubMed Google Scholar
Clarke, M. C. & Bennett, M. R. Cause or consequence: what does macrophage apoptosis do in atherosclerosis? Arterioscler. Thromb. Vasc. Biol. (2008).
Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res.46, 2347–2355 (2005). ArticleCASPubMed Google Scholar
Mach, F., Schönbeck, U., Bonnefoy, J. Y., Pober, J. S. & Libby, P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation96, 396–399 (1997). ArticleCASPubMed Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002). ArticleCASPubMed Google Scholar
Arkan, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med.11, 191–198 (2005). ArticleCASPubMed Google Scholar
Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science293, 1673–1677 (2001). ArticleCASPubMed Google Scholar
Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature444, 875–880 (2006). ArticleCASPubMed Google Scholar
Ridker, P. M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol.49, 2129–2138 (2007). ArticleCASPubMed Google Scholar
Everett, B. M., Kurth, T., Buring, J. E. & Ridker, P. M. The relative strength of C-reactive protein and lipid levels as determinants of ischemic stroke compared with coronary heart disease in women. J. Am. Coll. Cardiol.48, 2235–2242 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ridker, P. M., Stampfer, M. J. & Rifai, N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA285, 2481–2485 (2001). ArticleCASPubMed Google Scholar
Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med.336, 973–979 (1997). ArticleCASPubMed Google Scholar
Ridker, P. M., Rifai, N., Rose, L., Buring, J. E. & Cook, N. R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med.347, 1557–1565 (2002). ArticleCASPubMed Google Scholar
Koenig, W., Löwel, H., Baumert, J. & Meisinger, C. C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany. Circulation109, 1349–1353 (2004). ArticlePubMed Google Scholar
Pai, J. K. et al. Inflammatory markers and the risk of coronary heart disease in men and women. N. Engl. J. Med.351, 2599–2610 (2004). ArticleCASPubMed Google Scholar
Ballantyne, C. M. et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation109, 837–842 (2004). ArticleCASPubMed Google Scholar
Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med.350, 1387–1397 (2004). ArticleCASPubMed Google Scholar
Cushman, M. et al. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the cardiovascular health study. Circulation112, 25–31 (2005). ArticleCASPubMed Google Scholar
Laaksonen, D. E. et al. C-reactive protein in the prediction of cardiovascular and overall mortality in middle-aged men: a population-based cohort study. Eur. Heart J.26, 1783–1789 (2005). ArticleCASPubMed Google Scholar
Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation107, 499–511 (2003). ArticlePubMed Google Scholar
Ridker, P. M. et al. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation118, 2243–2251 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ridker, P. M., Buring, J. E., Rifai, N. & Cook, N. R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA297, 611–619 (2007). ArticleCASPubMed Google Scholar
Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA282, 2131–2135 (1999). ArticleCASPubMed Google Scholar
Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA286, 327–334 (2001). ArticleCASPubMed Google Scholar
Yudkin, J. S., Stehouwer, C. D., Emeis, J. J. & Coppack, S. W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol.19, 972–978 (1999). ArticleCASPubMed Google Scholar
Katagiri, H., Yamada, T. & Oka, Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res.101, 27–39 (2007). ArticleCASPubMed Google Scholar
Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res.96, 939–949 (2005). ArticleCASPubMed Google Scholar
Lihn, A. S., Pedersen, S. B. & Richelsen, B. Adiponectin: action, regulation and association to insulin sensitivity. Obes. Rev.6, 13–21 (2005). ArticleCASPubMed Google Scholar
Pajvani, U. B. et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem.279, 12152–12162 (2004). ArticleCASPubMed Google Scholar
Okamoto, Y., Kihara, S., Funahashi, T., Matsuzawa, Y. & Libby, P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin. Sci. (Lond.)110, 267–278 (2006). ArticleCAS Google Scholar
Ridker, P. M. et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation98, 839–844 (1998). ArticleCASPubMed Google Scholar
Ridker, P. M. et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med.344, 1959–1965 (2001). ArticleCASPubMed Google Scholar
Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med.352, 20–28 (2005). ArticleCASPubMed Google Scholar
Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med.359, 2195–2207 (2008). ArticleCASPubMed Google Scholar
Brown, J. D. & Plutzky, J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation115, 518–533 (2007). ArticleCASPubMed Google Scholar
Sidhu, J. S., Cowan, D. & Kaski, J. C. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J. Am. Coll. Cardiol.42, 1757–1763 (2003). ArticleCASPubMed Google Scholar
Pfutzner, A. et al. Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J. Am. Coll. Cardiol.45, 1925–1931 (2005). ArticleCASPubMed Google Scholar
Li, A. C. et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest.106, 523–531 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, A. C. et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J. Clin. Invest.114, 1564–1576 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet366, 1279–1289 (2005). ArticleCASPubMed Google Scholar
Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med.356, 2457–2471 (2007). ArticleCASPubMed Google Scholar
Jandeleit-Dahm, K. A., Calkin, A., Tikellis, C. & Thomas, M. Direct antiatherosclerotic effects of PPAR agonists. Curr. Opin. Lipidol.20, 24–29 (2009). ArticleCASPubMed Google Scholar
Fleischman, A., Shoelson, S. E., Bernier, R. & Goldfine, A. B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care31, 289–294 (2008). ArticleCASPubMed Google Scholar
Koska, J. et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia52, 385–393 (2009). ArticleCASPubMed Google Scholar
Hansson, G. K. Atherosclerosis—an immune disease: The Anitschkov Lecture 2007. Atherosclerosis202, 2–10 (2009). ArticleCASPubMed Google Scholar
Sheikine, Y. A. & Hansson, G. K. Chemokines as potential therapeutic targets in atherosclerosis. Curr. Drug Targets7, 13–27 (2006). ArticleCASPubMed Google Scholar
Ni, W. et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation103, 2096–2101 (2001). ArticleCASPubMed Google Scholar
Inoue, S. et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation106, 2700–2706 (2002). ArticleCASPubMed Google Scholar
Tamura, Y. et al. Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler. Thromb. Vasc. Biol.28, 2195–2201 (2008). ArticleCASPubMed Google Scholar
Braunersreuther, V. et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler. Thromb. Vasc. Biol.28, 1090–1096 (2008). ArticleCASPubMed Google Scholar
Combadiere, C. et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation107, 1009–1016 (2003). ArticleCASPubMed Google Scholar