Update on strategies to increase HDL quantity and function (original) (raw)
Boden, W. E. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High-density lipoprotein intervention trial. Am. J. Cardiol.86, 19L–22L (2000). CASPubMed Google Scholar
Barter, P. et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med.357, 1301–1310 (2007). CASPubMed Google Scholar
Lewis, G. F. & Rader, D. J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res.96, 1221–1232 (2005). CASPubMed Google Scholar
Cuchel, M. & Rader, D. J. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation113, 2548–2555 (2006). PubMed Google Scholar
Rader, D. J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest.116, 3090–3100 (2006). CASPubMedPubMed Central Google Scholar
Florentin, M., Liberopoulos, E. N., Wierzbicki, A. S. & Mikhailidis, D. P. Multiple actions of high-density lipoprotein. Curr. Opin. Cardiol.23, 370–378 (2008). PubMed Google Scholar
Chiesa, G. & Sirtori, C. R. Apolipoprotein A-I Milano: current perspectives. Curr. Opin. Lipidol.14, 159–163 (2003). CASPubMed Google Scholar
Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA290, 2292–2300 (2003). CASPubMed Google Scholar
Zhang, Y. et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest.115, 2870–2874 (2005). CASPubMedPubMed Central Google Scholar
Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med.357, 2109–2122 (2007). CASPubMed Google Scholar
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA285, 2486–2497 (2001).
Carlson, L. A. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med.258, 94–114 (2005). CASPubMed Google Scholar
The coronary drug project research group. Clofibrate and niacin in coronary heart disease. JAMA231, 360–381 (1975).
Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med.345, 1583–1592 (2001). CASPubMed Google Scholar
Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. & Grace, K. A. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation110, 3512–3517 (2004). CASPubMed Google Scholar
AIM HIGH: Niacin Plus Statin to Prevent Vascular Events. ClincialTrials.gov[online], (2009).
A Randomized Trial of the Long-term Clinical Effects of Raising HDL Cholesterol With Extended Release Niacin/Laropiprant ClinicalTrials.gov[online], (2007).
Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat.Med.9, 352–355 (2003). CASPubMed Google Scholar
Soga, T. et al. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun.303, 364–369 (2003). CASPubMed Google Scholar
Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem.278, 9869–9874 (2003). CASPubMed Google Scholar
Zhang, Y. et al. Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. Biochem. Biophys. Res. Commun.334, 729–732 (2005). CASPubMed Google Scholar
Ganji, S. H. et al. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res.45, 1835–1845 (2004). CASPubMed Google Scholar
Zhang, L. H., Kamanna, V. S., Zhang, M. C. & Kashyap, M. L. Niacin inhibits surface expression of ATP synthase β chain in HepG2 cells: implications for raising HDL. J. Lipid Res.49, 1195–1201 (2008). CASPubMed Google Scholar
Martinez, L. O. et al. Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature421, 75–79 (2003). CASPubMed Google Scholar
van der Hoorn, J. W. et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler. Thromb. Vasc. Biol.28, 2016–2022 (2008). CASPubMed Google Scholar
Cefali, E. A., Simmons, P. D., Stanek, E. J. & Shamp, T. R. Improved control of niacin-induced flushing using an optimized once-daily, extended-release niacin formulation. Int. J. Clin. Pharmacol. Ther.44, 633–640 (2006). CASPubMed Google Scholar
Benyo, Z. et al. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J. Clin. Invest.115, 3634–3640 (2005). CASPubMedPubMed Central Google Scholar
Cheng, K. et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA103, 6682–6687 (2006). CASPubMedPubMed Central Google Scholar
Lai, E. et al. Suppression of niacin-induced vasodilation with an antagonist to prostaglandin D2 receptor subtype 1. Clin. Pharmacol. Ther.81, 849–857 (2007). CASPubMed Google Scholar
Paolini, J. F. et al. Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am. J. Cardiol.101, 625–630 (2008). CASPubMed Google Scholar
Walters, R. W. et al. β-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J. Clin. Invest. doi: 10.1172/JCI36806. CAS Google Scholar
Clark, R. W. et al. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler. Thromb. Vasc. Biol.24, 490–497 (2004). CASPubMed Google Scholar
Brousseau, M. E. et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med.350, 1505–1515 (2004). CASPubMed Google Scholar
Brown, M. L. et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature342, 448–451 (1989). CASPubMed Google Scholar
Inazu, A. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med.323, 1234–1238 (1990). CASPubMed Google Scholar
Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med.356, 1304–1316 (2007). CASPubMed Google Scholar
Kastelein, J. J. P. et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med.356, 1620–1630 (2007). CASPubMed Google Scholar
Matsuura, F., Wang, N., Chen, W., Jiang, X. C. & Tall, A. R. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest.116, 1435–1442 (2006). CASPubMedPubMed Central Google Scholar
Yvan-Charvet, L. et al. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler. Thromb. Vasc. Biol.27, 1132–1138 (2007). CASPubMed Google Scholar
Krishna, R. et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet370, 1907–1914 (2007). CASPubMed Google Scholar
Bloomfield, D. et al. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and co-administered with atorvastatin in dyslipidemic patients. Am. Heart J.157, 352–360 e2 (2009). CASPubMed Google Scholar
A 76-Week, Worldwide, Multicenter, Double-Blind, Randomized, Placebo-Controlled Study to Assess the Tolerability and Efficacy of Anacetrapib When Added to Ongoing Therapy With a Statin in Patients with Coronary Heart Disease (CHD) or CHD Risk-Equivalent Disease. ClincialTrials.gov[online], (2009).
de Grooth, G. J. et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized phase II dose-response study. Circulation105, 2159–2165 (2002). CASPubMed Google Scholar
Kuivenhoven, J. A. et al. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am. J. Cardiol.95, 1085–1098 (2005). CASPubMed Google Scholar
A Randomized, Double-Blind, Placebo-Controlled Study Assessing the Effect of RO4607381 on Cardiovascular Mortality and Morbidity in Clinically Stable Patients With a Recent Acute Coronary Syndrome. ClinicalTrials.gov[online], (2008).
Santamarina-Fojo, S., Lambert, G., Hoeg, J. M. & Brewer, H. B., Jr. Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol.11, 267–275 (2000). CASPubMed Google Scholar
Hovingh, G. K. et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation112, 879–884 (2005). CASPubMed Google Scholar
Hoeg, J. M. et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc. Natl Acad. Sci. USA93, 11448–11453 (1996). CASPubMedPubMed Central Google Scholar
Foger, B. et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem.274, 36912–36920 (1999). CASPubMed Google Scholar
Mertens, A. et al. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation107, 1640–1646 (2003). CASPubMed Google Scholar
Esperion begins multiple-dose study of ETC-642 (RLT Peptide) in patients with stable atherosclerosis. [Online] (2003).
Plump, A., Scott, C. & Breslow, J. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA91, 9607–9611 (1994). CASPubMedPubMed Central Google Scholar
Tangirala, R. K. et al. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation100, 1816–1822 (1999). CASPubMed Google Scholar
Zhang, Y. et al. Overexpression of apoA-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation108, 661–663 (2003). CASPubMed Google Scholar
A Safety, Pharmacokinetic, and Pharmacodynamic Assessment of 28-Dy Oral Dosing of RVX000222 in Healthy Subjects and Subjects with Low High Density Lipoprotein (HDL). ClincialTrials.gov[online], (2008).
Jaye, M. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet.21, 424–428 (1999). CASPubMed Google Scholar
Jin, W., Millar, J. S., Broedl, U., Glick, J. M. & Rader, D. J. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest.111, 357–362 (2003). CASPubMedPubMed Central Google Scholar
Badellino, K. O., Wolfe, M. L., Reilly, M. P. & Rader, D. J. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med.3, e22 (2006). PubMed Google Scholar
Badellino, K. O., Wolfe, M. L., Reilly, M. P. & Rader, D. J. Endothelial lipase is increased in vivo by inflammation in humans. Circulation117, 678–685 (2008). CASPubMed Google Scholar
deLemos, A. S., Wolfe, M. L., Long, C. J., Sivapackianathan, R. & Rader, D. J. Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation106, 1321–1326 (2002). CASPubMed Google Scholar
Tang, N. P. et al. Protective effect of an endothelial lipase gene variant on coronary artery disease in a Chinese population. J. Lipid Res.49, 369–375 (2008). CASPubMed Google Scholar
Goodman, K. B. et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett.19, 27–30 (2009). CASPubMed Google Scholar
Li, A. C. & Glass, C. K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med.8, 1235–1242 (2002). CASPubMed Google Scholar
Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA101, 9774–9779 (2004). CASPubMedPubMed Central Google Scholar
Kennedy, M. A. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab.1, 121–131 (2005). CASPubMed Google Scholar
Hobbs, H. H. & Rader, D. J. ABC1: connecting yellow tonsils, neuropathy, and very low HDL. J. Clin. Invest.104, 1015–1017 (1999). CASPubMedPubMed Central Google Scholar
Vaisman, B. L. et al. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J. Clin. Invest.108, 303–309 (2001). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest.117, 2216–2224 (2007). CASPubMedPubMed Central Google Scholar
Repa, J. J. et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science289, 1524–1529 (2000). CASPubMed Google Scholar
Terasaka, N. et al. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett.536, 6–11 (2003). CASPubMed Google Scholar
Naik, S. U. et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation113, 90–97 (2006). CASPubMed Google Scholar
Bultel, S. et al. Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoprotein in primary human macrophages. Arterioscler. Thromb. Vasc. Biol.28, 2288–2295 (2008). CASPubMed Google Scholar
Li, A. C. & Glass, C. K. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid Res.45, 2161–2173 (2004). CASPubMed Google Scholar
Groot, P. H. E. et al. Synthetic LXR agonists increase LDL in CETP species. J. Lipid Res.46, 2182–2191 (2005). CASPubMed Google Scholar
Molteni, V. et al. N-acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRβ. J. Med. Chem.50, 4255–4259 (2007). CASPubMed Google Scholar
[No authors listed] Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation102, 21–27 (2000).
Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet366, 1849–1861 (2005). CASPubMed Google Scholar
Chinetti, G. et al. PPARα and PPARγ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med.7, 53–58 (2001). CASPubMed Google Scholar
Nissen, S. E. et al. Effects of a potent and selective PPARα agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA297, 1362–1373 (2007). CASPubMed Google Scholar
Millar, J. S. et al. Potent and selective PPARα agonist LY518674 upregulates both ApoA-I production and catabolism in human subjects with the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol.29, 140–146 (2009). CASPubMed Google Scholar
Nanjee, M. N. et al. Effects of intravenous infusion of lipid-free apo A-I in humans. Arterioscler. Thromb. Vasc. Biol.16, 1203–1214 (1996). CASPubMed Google Scholar
Nanjee, M. N., Doran, J. E., Lerch, P. G. & Miller, N. E. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol.19, 979–989 (1999). CASPubMed Google Scholar
Nanjee, M. N. et al. Intravenous apoA-I/lecithin discs increase pre-β-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J. Lipid Res.42, 1586–1593 (2001). CASPubMed Google Scholar
Eriksson, M., Carlson, L. A., Miettinen, T. A. & Angelin, B. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I: Potential reverse cholesterol transport in humans. Circulation100, 594–598 (1999). CASPubMed Google Scholar
Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA297, 1675–1682 (2007). PubMed Google Scholar
Sacks, F. M. et al. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J. Lipid Res.50, 894–907 (2009). CASPubMedPubMed Central Google Scholar
Rader, D. J. High-density lipoproteins as an emerging therapeutic target for atherosclerosis. JAMA290, 2322–2324 (2003). CASPubMed Google Scholar
Garber, D. W. et al. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J. Lipid Res.42, 545–552 (2001). CASPubMed Google Scholar
Anantharamaiah, G. M. et al. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I-mimetic peptides. J. Lipid Res.48, 1915–1923 (2007). CASPubMed Google Scholar
Navab, M. et al. Oral administration of an Apo A-I-mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation105, 290–292 (2002). CASPubMed Google Scholar
Navab, M. et al. Oral D-4F causes formation of pre-β high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation109, 3215–3220 (2004). CASPubMed Google Scholar
Bloedon, L. T. et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J. Lipid Res.49, 1344–1352 (2008). CASPubMedPubMed Central Google Scholar