Induced pluripotent stem cells: developmental biology to regenerative medicine (original) (raw)
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). CASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). CASPubMed Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). CASPubMed Google Scholar
Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol.25, 1177–1181 (2007). CASPubMed Google Scholar
Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell132, 567–582 (2008). CASPubMedPubMed Central Google Scholar
Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132, 661–680 (2008). CASPubMed Google Scholar
Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell1, 39–49 (2007). CASPubMed Google Scholar
Park, I. H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nat. Protoc.3, 1180–1186 (2008). CASPubMed Google Scholar
Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature465, 704–712 (2010). CASPubMedPubMed Central Google Scholar
Nelson, T., Behfar, A. & Terzic, A. Stem cells: biologics for regeneration. Clin. Pharmacol. Ther.84, 620–623 (2008). CASPubMed Google Scholar
Nelson, T. J., Behfar, A. & Terzic, A. Strategies for therapeutic repair: the “R3” regenerative medicine paradigm. Clin. Transl. Sci.1, 168–171 (2008). PubMedPubMed Central Google Scholar
Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature460, 53–59 (2009). CASPubMedPubMed Central Google Scholar
Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature461, 402–406 (2009). CASPubMedPubMed Central Google Scholar
Nelson, T. J., Behfar, A., Yamada, S., Martinez-Fernandez, A. & Terzic, A. Stem cell platforms for regenerative medicine. Clin. Transl. Sci.2, 222–227 (2009). CASPubMedPubMed Central Google Scholar
Wu, J. C., Abraham, M. R. & Kraitchman, D. L. Current perspectives on imaging cardiac stem cell therapy. J. Nucl. Med.51 (Suppl. 1), 128S–136S (2010).
Parker, A. et al. Diagnosis of post-transplant lymphoproliferative disorder in solid organ transplant recipients—BCSH and BTS Guidelines. Br. J. Haematol.149, 675–692 (2010). PubMed Google Scholar
Martinez, O. M. & de Gruijl, F. R. Molecular and immunologic mechanisms of cancer pathogenesis in solid organ transplant recipients. Am. J. Transplant.8, 2205–2211 (2008). CASPubMed Google Scholar
Campbell, K. H., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature380, 64–66 (1996). CASPubMed Google Scholar
Beyhan, Z., Iager, A. E. & Cibelli, J. B. Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell1, 502–512 (2007). CASPubMed Google Scholar
Byrne, J. A. et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature450, 497–502 (2007). CASPubMed Google Scholar
French, A. J. et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells26, 485–493 (2008). CASPubMed Google Scholar
Yamanaka, S. Pluripotency and nuclear reprogramming. Philos. Trans. R. Soc. Lond. B Biol. Sci.363, 2079–2087 (2008). CASPubMedPubMed Central Google Scholar
Yamanaka, S. Elite and stochastic models for induced pluripotent stem cell generation. Nature460, 49–52 (2009). CASPubMed Google Scholar
Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science321, 1218–1221 (2008). CASPubMed Google Scholar
Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature457, 277–280 (2009). CASPubMed Google Scholar
Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc.2, 3081–3089 (2007). CASPubMed Google Scholar
Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26, 1276–1284 (2008). CASPubMed Google Scholar
Eminli, S. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet.41, 968–976 (2009). CASPubMedPubMed Central Google Scholar
Sun, N. et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl Acad. Sci. USA106, 15720–15725 (2009). CASPubMedPubMed Central Google Scholar
Marion, R. M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell4, 141–154 (2009). CASPubMed Google Scholar
Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol.27, 353–360 (2009). CASPubMedPubMed Central Google Scholar
Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature454, 49–55 (2008). CASPubMedPubMed Central Google Scholar
Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. & Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell5, 237–241 (2009). CASPubMed Google Scholar
Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26, 795–797 (2008). CASPubMedPubMed Central Google Scholar
Banito, A. et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev.23, 2134–2139 (2009). CASPubMedPubMed Central Google Scholar
Utikal, J. et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature460, 1145–1148 (2009). CASPubMedPubMed Central Google Scholar
Marión, R. M. et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature460, 1149–1153 (2009). PubMedPubMed Central Google Scholar
Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature460, 1140–1144 (2009). CASPubMedPubMed Central Google Scholar
Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature460, 1132–1135 (2009). CASPubMedPubMed Central Google Scholar
Smith, Z. D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol.28, 521–526 (2010). CASPubMedPubMed Central Google Scholar
Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462, 595–601 (2009). CASPubMedPubMed Central Google Scholar
Hotta, A. & Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem.105, 940–948 (2008). CASPubMed Google Scholar
Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science322, 945–949 (2008). CASPubMedPubMed Central Google Scholar
Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science322, 949–953 (2008). CASPubMed Google Scholar
Chang, C. W. et al. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells27, 1042–1049 (2009). CASPubMed Google Scholar
Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458, 771–775 (2009). CASPubMedPubMed Central Google Scholar
Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458, 766–770 (2009). CASPubMedPubMed Central Google Scholar
Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science324, 797–801 (2009). CASPubMedPubMed Central Google Scholar
Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4, 381–384 (2009). CASPubMed Google Scholar
Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4, 472–476 (2009). CASPubMedPubMed Central Google Scholar
Schenke-Layland, K. et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells26, 1537–1546 (2008). CASPubMedPubMed Central Google Scholar
Martinez-Fernandez, A. et al. iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ. Res.105, 648–656 (2009). CASPubMedPubMed Central Google Scholar
Mauritz, C. et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation118, 507–517 (2008). PubMed Google Scholar
Narazaki, G. et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation118, 498–506 (2008). PubMed Google Scholar
Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res.104, e30–e41 (2009). CASPubMedPubMed Central Google Scholar
Tashiro, K. et al. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells27, 1802–1811 (2009). CASPubMed Google Scholar
Niwa, A. et al. Orderly hematopoietic development of induced pluripotent stem cells via Flk-1+ hemoangiogenic progenitors. J. Cell. Physiol.221, 367–377 (2009). CASPubMed Google Scholar
Senju, S. et al. Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells27, 1021–1031 (2009). CASPubMed Google Scholar
Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA106, 15768–15773 (2009). CASPubMedPubMed Central Google Scholar
Tateishi, K. et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem.283, 31601–31607 (2008). CASPubMed Google Scholar
Zhang, D. et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res.19, 429–438 (2009). CASPubMed Google Scholar
Si-Tayeb, K. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology51, 297–305 (2010). CASPubMed Google Scholar
Song, Z. et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res.19, 1233–1242 (2009). PubMed Google Scholar
Buchholz, D. E. et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells27, 2427–2434 (2009). CASPubMed Google Scholar
Meyer, J. S. et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl Acad. Sci. USA106, 16698–16703 (2009). CASPubMedPubMed Central Google Scholar
Osakada, F. et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci.122, 3169–3179 (2009). CASPubMed Google Scholar
Karumbayaram, S. et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells27, 806–811 (2009). CASPubMedPubMed Central Google Scholar
Smith, K. P., Luong, M. X. & Stein, G. S. Pluripotency: toward a gold standard for human ES and iPS cells. J. Cell. Physiol.220, 21–29 (2009). CASPubMed Google Scholar
Nelson, T. J., Martinez-Fernandez, A. & Terzic, A. KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philos. Trans. R. Soc. Lond. B Biol. Sci.364, 269–276 (2009). CASPubMed Google Scholar
Nagy, A., Nagy, K. & Gertsenstein, M. Production of mouse chimeras by aggregating pluripotent stem cells with embryos. Methods Enzymol.476, 123–149 (2010). CASPubMed Google Scholar
Zhao, X. Y. et al. iPS cells produce viable mice through tetraploid complementation. Nature461, 86–90 (2009). CASPubMed Google Scholar
Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature465, 175–181 (2010). CASPubMedPubMed Central Google Scholar
Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318, 1920–1923 (2007). CASPubMed Google Scholar
Xu, D. et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl Acad. Sci. USA106, 808–813 (2009). CASPubMedPubMed Central Google Scholar
Wernig, M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl Acad. Sci. USA105, 5856–5861 (2008). CASPubMedPubMed Central Google Scholar
Nelson, T. J. et al. Repair of acute myocardial infarction with human stemness factors induced pluripotent stem cells. Circulation120, 408–416 (2009). PubMedPubMed Central Google Scholar
Ye, Z. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood114, 5473–5480 (2009). CASPubMedPubMed Central Google Scholar
Chien, K. R., Domian, I. J. & Parker, K. K. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science322, 1494–1497 (2008). CASPubMed Google Scholar
Slack, J. M. Origin of stem cells in organogenesis. Science322, 1498–1501 (2008). CASPubMed Google Scholar
Garry, D. J. & Olson, E. N. A common progenitor at the heart of development. Cell127, 1101–1104 (2006). CASPubMed Google Scholar
Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nat. Biotechnol.23, 845–856 (2005). CASPubMed Google Scholar
Wu, S. M., Chien, K. R. & Mummery, C. Origins and fates of cardiovascular progenitor cells. Cell132, 537–543 (2008). CASPubMedPubMed Central Google Scholar
Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107, 2733–2740 (2003). CASPubMed Google Scholar
Schneider, V. A. & Mercola, M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev.15, 304–315 (2001). CASPubMedPubMed Central Google Scholar
Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M. & Lassar, A. B. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev.15, 316–327 (2001). CASPubMedPubMed Central Google Scholar
Olson, E. N. Development. The path to the heart and the road not taken. Science291, 2327–2378 (2001). CASPubMed Google Scholar
Pashmforoush, M. et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell117, 373–386 (2004). CASPubMed Google Scholar
Ishiwata, T., Nakazawa, M., Pu, W. T., Tevosian, S. G. & Izumo, S. Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circ. Res.93, 857–865 (2003). CASPubMed Google Scholar
Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature454, 109–113 (2008). CASPubMedPubMed Central Google Scholar
Christoffels, V. M. et al. Tbx18 and the fate of epicardial progenitors. Nature458, E8–E9 (2009). CASPubMed Google Scholar
Moskowitz, I. P. et al. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell129, 1365–1376 (2007). CASPubMed Google Scholar
Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell129, 303–317 (2007). CASPubMed Google Scholar
Rentschler, S. et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl Acad. Sci. USA99, 10464–10469 (2002). CASPubMedPubMed Central Google Scholar
Siedner, S. et al. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J. Physiol.548, 493–505 (2003). CASPubMedPubMed Central Google Scholar
MacLellan, W. R. & Schneider, M. D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol.62, 289–319 (2000). CASPubMed Google Scholar
Gai, H. et al. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol. Int.33, 1184–1193 (2009). CASPubMed Google Scholar
Kuzmenkin, A. et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J.23, 4168–4180 (2009). CASPubMed Google Scholar
Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y. & Terzic, A. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J. Cardiovasc. Transl. Res.3, 13–23 (2010). PubMedPubMed Central Google Scholar
Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation120, 1513–1523 (2009). CASPubMed Google Scholar
Moretti, A. et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J.24, 700–711 (2010). CASPubMed Google Scholar
Yokoo, N. et al. The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem. Biophys. Res. Commun.387, 482–488 (2009). CASPubMed Google Scholar
Pfannkuche, K. et al. Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell. Physiol. Biochem.24, 73–86 (2009). CASPubMed Google Scholar
Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. doi:10.1056/NEJMoa0908679. CAS Google Scholar
Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature465, 808–812 (2010). CASPubMedPubMed Central Google Scholar
Hansen, A. et al. Development of a drug screening platform based on engineered heart tissue. Circ. Res.107, 35–44 (2010). CASPubMed Google Scholar
Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell142, 375–386 (2010). CASPubMedPubMed Central Google Scholar
van Laake, L. W. et al. Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited gene expression variance. Circ. Res.107, 340–347 (2010). CASPubMedPubMed Central Google Scholar
Srinivas, G., Anversa, P. & Frishman, W. H. Cytokines and myocardial regeneration: a novel treatment option for acute myocardial infarction. Cardiol. Rev.17, 1–9 (2009). PubMed Google Scholar
Reinecke, H., Minami, E., Zhu, W. Z. & Laflamme, M. A. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ. Res.103, 1058–1071 (2008). CASPubMedPubMed Central Google Scholar
Bartunek, J. et al. Delivery of biologics in cardiovascular regenerative medicine. Clin. Pharmacol. Ther.85, 548–552 (2009). CASPubMed Google Scholar
Blin, G. et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J. Clin. Invest.120, 1125–1139 (2010). CASPubMedPubMed Central Google Scholar
Alper, J. Geron gets green light for human trial of ES cell-derived product. Nat. Biotechnol.27, 213–214 (2009). CASPubMed Google Scholar
Li, J. Y., Christophersen, N. S., Hall, V., Soulet, D. & Brundin, P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci.31, 146–153 (2008). PubMed Google Scholar
Olson, E. N. A decade of discoveries in cardiac biology. Nat. Med.10, 467–474 (2004). CASPubMed Google Scholar
Behfar, A. et al. Guided stem cell cardiopoiesis: discovery and translation. J. Mol. Cell. Cardiol.45, 523–529 (2008). CASPubMedPubMed Central Google Scholar
Behfar, A. et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med.204, 405–420 (2007). CASPubMedPubMed Central Google Scholar
Chiriac, A., Nelson, T. J., Faustino, R. S., Behfar, A. & Terzic, A. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network. PLoS ONE5, e9943 (2010). PubMedPubMed Central Google Scholar
Nelson, T. J. et al. CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells26, 1464–1473 (2008). CASPubMed Google Scholar
Moretti, A. et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell127, 1151–1165 (2006). CASPubMed Google Scholar
Kattman, S. J., Huber, T. L. & Keller, G. M. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell11, 723–732 (2006). CASPubMed Google Scholar
Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature453, 524–528 (2008). CASPubMed Google Scholar
Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature459, 708–711 (2009). CASPubMedPubMed Central Google Scholar
Padin-Iruegas, M. E. et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation120, 876–887 (2009). CASPubMedPubMed Central Google Scholar
Terzic, A. & Nelson, T. J. Regenerative medicine advancing health care 2020. J. Am. Coll. Cardiol.55, 2254–2257 (2010). PubMed Google Scholar
Yoshida, Y. & Yamanaka, S. Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation122, 80–87 (2010). PubMed Google Scholar