Treatment of HER2-positive breast cancer: current status and future perspectives (original) (raw)
Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer4, 361–370 (2004). ArticleCASPubMed Google Scholar
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol.2, 127–137 (2001). ArticleCASPubMed Google Scholar
Graus-Porta, D., Beerli, R. R., Daly, J. M. & Hynes, N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J.16, 1647–1655 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lee-Hoeflich, S. T. et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res.68, 5878–5887 (2008). ArticleCASPubMed Google Scholar
Ross, J. S. et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist14, 320–368 (2009). ArticleCASPubMed Google Scholar
Chia, S. et al. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J. Clin. Oncol.26, 5697–5704 (2008). ArticleCASPubMed Google Scholar
Molina, M. A. et al. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res.61, 4744–4749 (2001). CASPubMed Google Scholar
Baselga, J., Albanell, J., Molina, M. A. & Arribas, J. Mechanism of action of trastuzumab and scientific update. Semin. Oncol.28 (Suppl. 16), 4–11 (2001). ArticleCASPubMed Google Scholar
Spector, N. L. & Blackwell, K. L. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol.27, 5838–5847 (2009). ArticleCASPubMed Google Scholar
Horlock, C. et al. The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br. J. Cancer7, 1061–1067 (2009). ArticleCAS Google Scholar
Mohsin, S. K. et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J. Clin. Oncol.23, 2460–2468 (2005). ArticleCASPubMed Google Scholar
Goldhirsch, A. et al. Strategies for sutypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol.22, 1736–1747 (2011). ArticleCASPubMedPubMed Central Google Scholar
NCCN Practice Guidelines in Oncology. National Comprehensive Cancer Network[online], (2011).
Yin, W., Jiang, Y., Shen, Z., Shao, Z. & Lu, J. Trastuzumab in the adjuvant treatment of HER2-positive early breast cancer patients: a meta-analysis of published randomized controlled trials. PLoS ONE6, e21030 (2011). ArticleCASPubMedPubMed Central Google Scholar
Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med.353, 1659–1672 (2005). ArticleCASPubMed Google Scholar
Gianni, L. et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol.12, 236–244 (2011). ArticleCASPubMed Google Scholar
Banerjee, S. & Smith, I. E. Management of small HER2-positive breast cancers. Lancet Oncol.11, 1193–1199 (2010). ArticleCASPubMed Google Scholar
Joensuu, H. et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med.354, 809–820 (2006). ArticleCASPubMed Google Scholar
Joensuu, H. et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHER Trial. J. Clin. Oncol.27, 5685–5692 (2009). ArticleCASPubMed Google Scholar
Perez, E. A. et al. Results of chemotherapy alone, with sequential or concurrent addition of 52 weeks of trastuzumab in the NCCTG N9831 HER2-positive adjuvant breast cancer trial [abstract]. Cancer Res.70, a5640 (2009). Google Scholar
Mackey, J. et al. Adjuvant targeted therapy in early breast cancer. Cancer115, 1154–1168 (2009). ArticleCASPubMed Google Scholar
Garnock-Jones, K. P., Keating, G. M. & Scott, L. J. Trastuzumab: a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs70, 215–239 (2010). ArticleCASPubMed Google Scholar
Bria, E. et al. Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res. Treat.109, 231–239 (2008). ArticleCASPubMed Google Scholar
Gianni, L. et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet375, 377–384 (2010). ArticleCASPubMed Google Scholar
Buzdar, A. U. et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J. Clin. Oncol.23, 3676–3685 (2005). ArticleCASPubMed Google Scholar
Chang, H. R. Trastuzumab-based neoadjuvant therapy in patients with HER2-positive breast cancer. Cancer116, 2856–2867 (2010). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344, 783–792 (2001). ArticleCASPubMed Google Scholar
Marty, M. et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J. Clin. Oncol.23, 4265–4274 (2005). ArticleCASPubMed Google Scholar
Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol.17, 2639–2648 (1999). ArticleCASPubMed Google Scholar
Yerushalmi, R. & Gelmon, K. Treatment beyond progression: is it moving from belief to evidence? Oncologist15, 796–798 (2010). ArticlePubMedPubMed Central Google Scholar
von Minckwitz, G. et al. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a German Breast Group 26/Breast International Group 03–05 study. J. Clin. Oncol.27, 1999–2006 (2009). ArticleCASPubMed Google Scholar
Robert, N. et al. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J. Clin. Oncol.24, 2786–2792 (2006). ArticleCASPubMed Google Scholar
Wardley, A. M. et al. Randomized phase II trial of first-line trastuzumab plus docetaxel and capecitabine compared with trastuzumab plus docetaxel in HER2-positive metastatic breast cancer. J. Clin. Oncol.28, 976–983 (2010). ArticleCASPubMed Google Scholar
Chan, A. et al. Vinorelbine plus trastuzumab combination as first-line therapy for HER 2-positive metastatic breast cancer patients: an international phase II trial. Br. J. Cancer95, 788–793 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yardley, D. A. et al. Weekly gemcitabine and trastuzumab in the treatment of patients with HER2-overexpressing metastatic breast cancer. Clin. Breast Cancer9, 178–183 (2009). ArticleCASPubMed Google Scholar
Bianchi, G. et al. Pilot trial of trastuzumab starting with or after the doxorubicin component of a doxorubicin plus paclitaxel regimen for women with HER2-positive advanced breast cancer. Clin. Cancer Res.9, 5944–5951 (2003). CASPubMed Google Scholar
Untch, M. et al. First-line trastuzumab plus epirubicin and cyclophosphamide therapy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: cardiac safety and efficacy data from the Herceptin, Cyclophosphamide, and Epirubicin (HERCULES) trial. J. Clin. Oncol.28, 1473–1480 (2010). ArticleCASPubMed Google Scholar
Ewer, M. S. et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J. Clin. Oncol.23, 7820–7826 (2005). ArticleCASPubMed Google Scholar
de Korte, M. A. et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur. J. Cancer43, 2046–2051 (2007). ArticleCASPubMed Google Scholar
de Azambuja, E., Bedard, P. L., Suter, T. & Piccart-Gebhart, M. Cardiac toxicity with anti-HER-2 therapies: what have we learned so far? Target Oncol.4, 77–88 (2009). ArticlePubMed Google Scholar
Spector, N. L. et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol.23, 2502–2512 (2005). ArticleCASPubMed Google Scholar
Xia, W. et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene21, 6255–6263 (2002). ArticleCASPubMed Google Scholar
Konecny, G. E. et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res.66, 1630–1639 (2006). ArticleCASPubMed Google Scholar
Xia, W., Liu, L. H., Ho, P. & Spector, N. L. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene23, 646–653 (2004). ArticleCASPubMed Google Scholar
Xia, W. et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene24, 6213–6221 (2005). ArticleCASPubMed Google Scholar
O'Donovan, N. et al. Synergistic interaction between trastuzumab and EGFR/HER-2 tyrosine kinase inhibitors in HER-2 positive breast cancer cells. Invest. New Drugs29, 752–759 (2010). ArticlePubMedCAS Google Scholar
Blackwell, K. L. et al. Single-agent lapatinib for HER2-overexpressing advanced or metastatic breast cancer that progressed on first- or second-line trastuzumab-containing regimens. Ann. Oncol.20, 1026–1031 (2009). ArticleCASPubMed Google Scholar
Cameron, D. et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat.112, 533–543 (2008). ArticleCASPubMed Google Scholar
Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med.355, 2733–2743 (2006). ArticleCASPubMed Google Scholar
Blackwell, K. L. et al. Updated survival analysis of a randomized study of lapatinib alone or in combination with trastuzumab in women with HER2-positive metastatic breast cancer progressing on trastuzumab therapy [abstract]. Cancer Res.69 (Suppl. 24), a61 (2009). Article Google Scholar
Blackwell, K. L. et al. Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol.28, 1124–1130 (2010). ArticleCASPubMed Google Scholar
Perez, E. A. et al. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin. Proc.83, 679–686 (2008). ArticlePubMed Google Scholar
Azim, H., Azim, H. A. Jr & Escudier B. Trastuzumab versus lapatinib: the cardiac side of the story. Cancer Treat. Rev.35, 633–638 (2009). ArticleCASPubMed Google Scholar
Baselga, J. et al. First results of the NeoALTTO trial (BIG 01–06 / EGF 106903): a phase III, randomized, open label, neoadjuvant study of lapatinib, trastuzumab, and their combination plus paclitaxel in women with HER2-positive primary breast cancer [abstract S3-3]. Cancer Res.70 (Suppl. 24), 82s (2010). Google Scholar
Untch, M. et al. Lapatinib vs trastuzumab in combination with neo-adjuvant anthracycline-taxane-based chemotherapy: Primary efficacy endpoint analysis of the GEPARQUINTO STUDY (GBG 44) [abstract S3-1]. Cancer Res.70 (Suppl. 24), 81s (2010). Google Scholar
Guarneri, V. et al. Final results of a phase II randomized trial of neoadjuvant anthracycline-taxane chemotherapy plus lapatinib, trastuzumab, or both in HER2-positive breast cancer (CHER-LOB trial) [abstract]. J. Clin. Oncol.29 (Suppl.), a507 (2011). Article Google Scholar
Koninki, K. et al. Multiple molecular mechanisms underlying trastuzumab and lapatinib resistance in JIMT-1 breast cancer cells. Cancer Lett.28, 211–219 (2010). ArticleCAS Google Scholar
Vazquez-Martin, A., Colomer, R., Brunet, J. & Menendez, J. A. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells. Int. J. Oncol.31, 769–776 (2007). CASPubMed Google Scholar
Nahta, R., Shabaya, S., Ozbay, T. & Rowe, D. L. Personalizing HER2-targeted therapy in metastatic breast cancer beyond HER2 status: what we have learned from clinical specimens. Curr. Pharmacogenomics Person. Med.7, 263–274 (2009). ArticleCASPubMedPubMed Central Google Scholar
Arpino, G. et al. Treatment of human epidermal growth factor receptor 2-overexpressing breast cancer xenografts with multiagent HER-targeted therapy. J. Natl. Cancer Inst.99, 694–705 (2007). ArticleCASPubMed Google Scholar
Huang, X. et al. Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-i receptor in breast cancer cells resistant to herceptin. Cancer Res.70, 1204–1214 (2010). ArticleCASPubMed Google Scholar
Nahta, R., Yuan, L. X., Zhang, B., Kobayashi, R. & Esteva, F. J. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res.65, 11118–11128 (2005). ArticleCASPubMed Google Scholar
Dokmanovic, M., Hirsch, D. S., Shen, Y. & Wu, W. J. Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer. Mol. Cancer Ther.8, 1557–1569 (2009). ArticleCASPubMed Google Scholar
Shattuck, D. L., Miller, J. K., Carraway, K. L. III & Sweeney, C. Met receptor contributes to trastuzumab resistance of HER2-overexpressing breast cancer cells. Cancer Res.68, 1471–1477 (2008). ArticleCASPubMed Google Scholar
Garrett, J. et al. Transcriptional and post-translational upregulation of HER3 (ErbB3) counteracts antitumor effect of HER2 tyrosine kinase inhibitors [abstract]. Cancer Res.69 (Suppl.), a63 (2010). Google Scholar
Xia, W. et al. Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Res.67, 1170–1175 (2007). ArticleCASPubMed Google Scholar
Xia, W. et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc. Natl. Acad. Sci. USA103, 7795–7800 (2006). ArticleCASPubMedPubMed Central Google Scholar
Xia, W. et al. Resistance to ErbB2 tyrosine kinase inhibitors in breast cancer is mediated by calcium-dependent activation of RelA. Mol. Cancer Ther.9, 292–299 (2010). ArticleCASPubMed Google Scholar
Musolino, A. et al. Immunoglobulin G. Fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol.26, 1789–1796 (2008). ArticleCASPubMed Google Scholar
Karagiannis, P. et al. Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol. Immunother.58, 915–930 (2009). ArticleCASPubMed Google Scholar
Mori, K. et al. Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology55, 109–114 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem.278, 3466–3473 (2003). ArticleCASPubMed Google Scholar
Junttila, T. T. et al. Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res.70, 4481–4489 (2010). ArticleCASPubMed Google Scholar
Suzuki, E. et al. A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin. Cancer Res.13, 1875–1882 (2007). ArticleCASPubMed Google Scholar
McCall, A. M. et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J. Immunol.166, 6112–6117 (2001). ArticleCASPubMed Google Scholar
Kiewe, P. & Thiel, E. Ertumaxomab: a trifunctional antibody for breast cancer treatment. Expert Opin. Investig. Drugs17, 1553–1558 (2008). ArticleCASPubMed Google Scholar
Jäger, M., Schoberth, A., Ruf, P. & Lindhofer, H. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res.69, 4270–4276 (2009). ArticlePubMedCAS Google Scholar
Kiewe, P. et al. Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin. Cancer Res.12, 3085–3091 (2006). ArticleCASPubMed Google Scholar
Azemar, M. et al. Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2. Breast Cancer Res. Treat.82, 155–164 (2003). ArticleCASPubMed Google Scholar
Junttila, T. T., Li, G., Parsons, K., Phillips, G. L. & Slowkowski, M. X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat.128, 347–356 (2010). ArticlePubMedCAS Google Scholar
Krop, I. E. et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol.28, 2698–2704 (2010). ArticleCASPubMed Google Scholar
Krop, I. et al. A phase II study of the HER2 antibody-drug conjugate trastuzumab-DM1 (T-DM1) in patients (pts) with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab, lapatinib and chemotherapy [abstract]. Ann. Oncol.21 (Suppl. 8), viii96–viii121 (2010). Google Scholar
Burris, H. A. III et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol.29, 398–405 (2011). ArticleCASPubMed Google Scholar
LoRusso, P. et al. Quantitative assessment of diagnostic markers and correlations with efficacy in two phase II studies of trastuzumab-DM1 (T-DM1) for patients (pts) with metastatic breast cancer (MBC) who had progressed on prior HER2-directed therapy [abstract]. J. Clin. Oncol.28 (Suppl.), a1016 (2010). Article Google Scholar
Perez, E. A. Efficacy and safety of trastuzumab-DM1 versus trastuzumab plus docetaxel in HER2-positive metastatic breast cancer patients with no prior chemotherapy for metastatic disease: preliminary results of a randomized, multicenter, open-label phase II study (TDM4450g) [abstract]. Ann. Oncol.21 (Suppl. 8), viii2 (2010). Google Scholar
Agus, D. B. et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell2, 127–137 (2002). ArticleCASPubMed Google Scholar
Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell5, 317–328 (2004). ArticleCASPubMed Google Scholar
Scheuer, W. et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res.69, 9330–9336 (2009). ArticleCASPubMed Google Scholar
Brockhoff, G. et al. Differential impact of cetuximab, pertuzumab and trastuzumab on BT474 and SK-BR-3 breast cancer cell proliferation. Cell Prolif.40, 488–507 (2007). ArticleCASPubMedPubMed Central Google Scholar
Baselga, J. et al. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth Factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J. Clin. Oncol.28, 1138–1144 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gianni, L. et al. Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol.28, 1131–1137 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gianni, L. et al. Neoadjuvant pertuzumab (P) and trastuzumab (H): antitumor and safety analysis of a randomized phase II study ('NeoSphere') [abstract]. Cancer Res.70 (Suppl. 2), S3-2 (2010). Article Google Scholar
D'Alessio, A. et al. Effects of the combined blockade of EGFR and ErbB-2 on signal transduction and regulation of cell cycle regulatory proteins in breast cancer cells. Breast Cancer Res. Treat123, 387–396 (2009). ArticlePubMedCAS Google Scholar
Dickler, M. N., Cobleigh, M. A., Miller, K. D., Klein, P. M. & Winer, E. P. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res. Treat.115, 115–121 (2009). ArticleCASPubMed Google Scholar
Green, M. D. et al. Gefitinib treatment in hormone-resistant and hormone receptor-negative advanced breast cancer. Ann. Oncol.20, 1813–1817 (2009). ArticleCASPubMed Google Scholar
Mayer, E. L. et al. Tolerability of and adherence to combination oral therapy with gefitinib and capecitabine in metastatic breast cancer. Breast Cancer Res. Treat.117, 615–623 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gioulbasanis, I. et al. Gefitinib in combination with gemcitabine and vinorelbine in patients with metastatic breast cancer pre-treated with taxane and anthracycline chemotherapy: a phase I/II trial. Anticancer Res.28, 3019–3025 (2008). CASPubMed Google Scholar
Finn, R. S., Bentley, G., Britten, C. D., Amado, R. & Busuttil, R. W. Targeting vascular endothelial growth factor with the monoclonal antibody bevacizumab inhibits human hepatocellular carcinoma cells growing in an orthotopic mouse model. Liver Int.29, 284–290 (2009). ArticleCASPubMed Google Scholar
Arteaga, C. L. et al. A phase I-II study of combined blockade of the ErbB receptor network with trastuzumab and gefitinib in patients with HER2 (ErbB2)-overexpressing metastatic breast cancer. Clin. Cancer Res.14, 6277–6283 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shi, F., Telesco, S. E., Liu, Y., Radhakrishnan, R. & Lemmon, M. A. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA107, 7692–7697 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pinkas-Kramarski, R. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J.15, 2452–2467 (1996). ArticleCASPubMedPubMed Central Google Scholar
Campbell, M. R., Amin, D. & Moasser, M. M. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin. Cancer Res.16, 1373–1383 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ocaña, A. & Amir, E. Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions. Cancer Treat. Rev.35, 685–691 (2009). ArticlePubMedCAS Google Scholar
Burstein, H. J. et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol.28, 1301–1307 (2010). ArticleCASPubMed Google Scholar
Courtney, K. D., Corcoran, R. B. & Engelman, J. A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol.28, 1075–1083 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yao, E. et al. Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clin. Cancer Res.15, 4147–4156 (2009). ArticleCASPubMed Google Scholar
Junttila, T. T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell15, 429–440 (2009). ArticleCASPubMed Google Scholar
Hynes, N. E. & Dey, J. H. PI3K inhibition overcomes trastuzumab resistance: blockade of ErbB2/ErbB3 is not always enough. Cancer Cell15, 353–355 (2009). ArticleCASPubMed Google Scholar
Damilano, F., Perino, A. & Hirsch, E. PI3K kinase and scaffold functions in heart. Ann. NY Acad. Sci.1188, 39–45 (2010). ArticleCASPubMed Google Scholar
Wagner, A. J. et al. A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors [abstract]. J. Clin. Oncol.27 (Suppl. 15), a3501 (2009). Google Scholar
Shapiro, G. et al. Phase I dose-escalation study of XL147, a PI3K inhibitor administered orally to patients with solid tumors [abstract]. J. Clin. Oncol.27 (Suppl. 15), a3500 (2009). Google Scholar
Jimeno, A. et al. Phase I trial of PX-866, a novel phosphoinositide-3-kinase (PI-3K) inhibitor [abstract]. J. Clin. Oncol.27 (Suppl. 15), a3542 (2009). Google Scholar
Chiorean, E. G. et al. Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors [abstract]. J. Clin. Oncol.27 (Suppl. 15), a2558 (2009). Google Scholar
LoRusso, P. et al. A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765, a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced solid tumors [abstract]. J. Clin. Oncol.27 (Suppl. 15), a3502 (2009). Google Scholar
Tolcher, A. W. et al. A phase I study of MK-2206, an oral potent allosteric Akt inhibitor (Akti), in patients (pts) with advanced solid tumor (ST) [abstract]. J. Clin. Oncol.27 (Suppl. 15), a3503 (2009). Google Scholar
Dienstmann, R., Rodon, J., Markman, B. & Tabernero, J. Recent developments in anti-cancer agents targeting PI3K, Akt and mTORC1/2. Recent Pat. Anticancer Drug Discov.6, 210–236 (2011). ArticleCASPubMed Google Scholar
Raynaud, F. I. et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther.8, 1725–1738 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chan, S. et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol.23, 5314–5322 (2005). ArticleCASPubMed Google Scholar
Chow, L. W. C. et al. Phase III study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer [abstract]. Breast Cancer Res. Treat.100 (Suppl. 1), S286 (2006). Google Scholar
Sessa, C. et al. Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel. Ann. Oncol.21, 1315–1322 (2009). ArticlePubMed Google Scholar
Hartford, C. M. et al. A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin. Cancer Res.15, 1428–1434 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mita, M. M. et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J. Clin. Oncol.26, 361–367 (2008). ArticleCASPubMed Google Scholar
Rizzieri, D. A. et al. A phase II clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res.14, 2756–2762 (2008). ArticleCASPubMed Google Scholar
Yardley, D. A. et al. Ridaforolimus (AP23573; MK-8669) in combination with trastuzumab for patients with HER2-positive trastuzumab-refractory metastatic breast cancer: a multicenter phase 2 clinical trial [abstract]. Cancer Res.69 (Suppl. 3), a3091 (2009). Article Google Scholar
Ellard, S. L. et al. Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J. Clin. Oncol.27, 4536–4541 (2009). ArticleCASPubMed Google Scholar
Jerusalem, G. H. et al. Multicenter phase I clinical trial of daily and weekly RAD001 in combination with vinorelbine and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab [abstract]. J. Clin. Oncol.26 (Suppl. 15), a1057 (2008). Article Google Scholar
Andre, F. et al. Multicenter phase I clinical trial of daily and weekly RAD001 in combination with weekly paclitaxel and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab [abstract]. J. Clin. Oncol.26 (Suppl. 15), a1003 (2008). Article Google Scholar
Raja, S. M. et al. A combination of trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells. Cancer Biol. Ther.7, 1630–1640 (2008). ArticleCASPubMed Google Scholar
Erlichman, C. Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opin. Investig. Drugs18, 861–868 (2009). ArticleCASPubMed Google Scholar
Modi, S. et al. Phase I trial of KOS-953, a heat shock protein 90 inhibitor, and trastuzumab (T) [abstract]. J. Clin. Oncol.24 (Suppl. 18), a501 (2006). Google Scholar
Modi, S. et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) [abstract]. J. Clin. Oncol.26 (Suppl. 15), a1027 (2008). Article Google Scholar
Ramanathan, R. K. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor of heat-shock protein 90, in patients with advanced solid tumors. J. Clin. Oncol.28, 1520–1526 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miller, K. et al. Phase I trial of alvespimycin (KOS-1022; 17-DMAG) and trastuzumab (T) [abstract]. J. Clin. Oncol.25 (Suppl. 18), a1115 (2007). Google Scholar
Hanson, B. E. & Vesole, D. H. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent. Expert Opin. Investig. Drugs18, 1375–1383 (2009). ArticleCASPubMed Google Scholar
Demetri, G. D. et al. Final results from a phase III study of IPI-504 (retaspimycin hydrochloride) versus placebo in patients (pts) with gastrointestinal stromal tumors (GIST) following failure of kinase inhibitor therapies [abstract]. ASCO Gastrointestinal Cancers Symposium (Orlando, FL, USA, 2010). Google Scholar
Lundgren, K. et al. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol. Cancer Ther.8, 921–929 (2009). ArticleCASPubMed Google Scholar
Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature416, 279–280 (2002). ArticleCASPubMed Google Scholar
Kumar, R. & Yarmand-Bagheri, R. The role of HER2 in angiogenesis. Semin. Oncol.28 (Suppl 16), 27–32 (2001). ArticleCASPubMed Google Scholar
Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med.357, 2666–2676 (2007). ArticleCASPubMed Google Scholar
Pegram, M., Chan, D. & Dichmann, R. A. Phase II combined biological therapy targeting the HER2 proto-oncogene and the vascular endothelial growth factor using trastuzumab (T) and bevacizumab (B) as first line treatment of HER2-amplified breast cancer [abstract 301]. Breast Cancer Res. Treat.100 (Suppl. 1), S28 (2006). Google Scholar
Yardley, D. A. Integrating bevacizumab into the treatment of patients with early-stage breast cancer: focus on cardiac safety. Clin. Breast Cancer10, 119–129 (2010). ArticleCASPubMed Google Scholar
Smith, I. et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet369, 29–36 (2007). ArticleCASPubMed Google Scholar
Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med.353, 1673–1684 (2005). ArticleCASPubMed Google Scholar
Perez, E. A. et al. Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patients with HER2-positive breast cancer [abstract]. J. Clin. Oncol.25 (Suppl. 18), a512 (2007). Google Scholar
Perez, E. A. et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor-2-positive breast cancer: joint analysis of data fro NCCTG N9831 and NSABP B-31. J. Clin. Oncol.29, 3366–3373, (2011). ArticleCASPubMedPubMed Central Google Scholar
Slamon, D. J. et al. Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (ACTH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2/neu positive early breast cancer patients: BCIRG 006 Study [abstract]. Breast Cancer Res. Treat.94 (Suppl. 1), S5 (2005). Google Scholar
Spielmann, M. et al. Trastuzumab for patients with axillary-node-positive breast cancer: results of the FNCLCC-PACS 04 trial. J. Clin. Oncol.27, 6129–6134 (2009). ArticleCASPubMed Google Scholar
Sledge, G. et al. Pilot trial of paclitaxel-Herceptin adjuvant therapy for early stage breast cancer (E2198) [abstract]. Breast Cancer Res. Treat.69, a209 (2001). Google Scholar
Sledge, G. et al. Adjuvant trastuzumab: long-term results of E2198 [abstract]. Breast Cancer Res. Treat.100 (Suppl. 1), S106 (2006). Google Scholar
Di Leo, A. et al. Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J. Clin. Oncol.26, 5544–5552 (2008). ArticleCASPubMedPubMed Central Google Scholar
Johnston, S. et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J. Clin. Oncol.27, 5538–5546 (2009). ArticleCASPubMed Google Scholar
Schwarzberg, L. S. et al. Lapatinib plus letrozole as first-line therapy for HER-2+ hormone receptor-positive metastatic breast cancer. Oncologist15, 122–129 (2010). ArticleCASPubMed Google Scholar
Tomasello, G., de Azambuja, E., Dinh, P., Snoj, N. & Piccart-Gebhart, M. Jumping higher: is it still possible? The ALTTO trial challenge. Expert Rev. Anticancer Ther.8, 1883–1890 (2008). ArticleCASPubMed Google Scholar
Frassoldati, A. et al. Preplanned first-step analysis of LET-LOB neoadjuvant study: a double-blind randomized phase IIb trial of letrozole (L) plus lapatinib (Lp) or placebo (P) in postmenopausal HER2-ve, HR+ve operable breast cancer [abstract]. J. Clin. Oncol.27 (Suppl. 15), a570 (2009). Google Scholar
Guarneri, V. et al. Preoperative chemotherapy plus lapatinib or trastuzumab or both in HER2-positive operable breast cancer (CHERLOB Trial). Clin. Breast Cancer8, 192–194 (2008). ArticleCASPubMed Google Scholar
Krop, I. E. et al. Quantitative assessment of HER2 status and correlation with efficacy for patients (pts) with metastatic breast cancer (MBC) in a phase II study of trastuzumab-DM1 (T-DM1) [abstract]. J. Clin. Oncol.27 (Suppl. 15), a1003 (2009). Google Scholar
Schoeberl, B. et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res.70, 2485–2494 (2010). ArticleCASPubMedPubMed Central Google Scholar
Huhalov, A. et al. MM-111, an ErbB2/ErbB3 bispecific antibody with potent activity in ErbB2-overexpressing cells, positively combines with trastuzumab to inhibit growth of breast cancer cells driven by the ErbB2/ErbB3 oncogenic unit [abstract 3485]. Proc. of the AACR (Washington DC, USA, 2010).
Hickish, T. et al. Use of BIBW a novel irreversible EGFR/HER2 tyrosine kinase inhibitor (TKI), to treat patients with HER2-positive metastatic breast cancer after failure of treatment with trastuzumab [abstract]. J. Clin. Oncol.27 (Suppl. 15), a1023 (2009). Google Scholar
Baselga, J. et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol.27, 2630–2637 (2009). ArticleCASPubMed Google Scholar
Gualberto, A. Figitumumab (CP-751, 871) for cancer therapy. Expert Opin. Biol. Ther.10, 575–585 (2010). ArticleCASPubMed Google Scholar
Peoples, G. E. et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U. S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin. Cancer Res.14, 797–803 (2008). ArticleCASPubMed Google Scholar
Mittendorf, E. A., Holmes, J. P., Ponniah, S. & Peoples, G. E. The E75 HER2/neu peptide vaccine. Cancer Immunol. Immunother.57, 1511–1521 (2008). ArticleCASPubMed Google Scholar
Patil, R. et al. Clinical and immunologic responses of HLA-A3+ breast cancer patients vaccinated with the HER2/neu-derived peptide vaccine, E75, in a phase I/II clinical trial. J. Am. Coll. Surg.210, 140–147 (2010). ArticlePubMed Google Scholar
Holmes, J. P. et al. Optimal dose and schedule of an HER-2/neu (E75) peptide vaccine to prevent breast cancer recurrence: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer113, 1666–1675 (2008). ArticleCASPubMed Google Scholar
Carmichael, M. G. et al. Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States Military Cancer Institute Clinical Trials Group Study I-04. Cancer116, 292–301 (2010). ArticleCASPubMed Google Scholar
Holmes, J. P. et al. Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J. Clin. Oncol.26, 3426–3433 (2008). ArticleCASPubMed Google Scholar
Morse, M. A. et al. Long term disease-free survival and T cell and antibody responses in women with high-risk HER2+ breast cancer following vaccination against HER2. J. Transl. Med.5, 42 (2007). ArticlePubMedPubMed Central Google Scholar
Slamon, D. et al. Randomized study of pazopanib+lapatinib vs. lapatinib alone in patients with HER2-positive advanced or metastatic breast cancer [abstract]. J. Clin. Oncol.26 (Suppl. 15), a1016 (2008). Article Google Scholar
Burstein, H. J. et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol.26, 1810–1816 (2008). ArticleCASPubMed Google Scholar