The discovery of receptor tyrosine kinases: targets for cancer therapy (original) (raw)
Levi-Montalcini, R. Effects of mouse tumor transplantation on the nervous system. Ann. NY Acad. Sci.55, 330–344 (1952). ArticleCASPubMed Google Scholar
Cohen, S. & Levi-Montalcini, R. Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res.17, 15–20 (1957). CASPubMed Google Scholar
Levi-Montalcini, R. & Cohen, S. Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Ann. NY Acad. Sci.85, 324–341 (1960). CASPubMed Google Scholar
Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem.237, 1555–1562 (1962). ArticleCASPubMed Google Scholar
Cohen, S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev. Biol.12, 394–407 (1965). ArticleCASPubMed Google Scholar
Carpenter, G., Lembach, K. J., Morrison, M. M. & Cohen, S. Characterization of the binding of 125I-labeled epidermal growth factor to human fibroblasts. J. Biol. Chem.250, 4297–4304 (1975). ArticleCASPubMed Google Scholar
Carpenter, G., King, L. Jr & Cohen, S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature276, 409–410 (1978). ArticleCASPubMed Google Scholar
Eckhart, W., Hutchinson, M. A. & Hunter, T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell18, 925–933 (1979). ArticleCASPubMed Google Scholar
Hunter, T. & Sefton, B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA77, 1311–1315 (1980). ArticleCASPubMedPubMed Central Google Scholar
Ushiro, H. & Cohen, S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J. Biol. Chem.255, 8363–8365 (1980). ArticleCASPubMed Google Scholar
Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M. & Kahn, C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature298, 667–669 (1982). ArticleCASPubMed Google Scholar
Ek, B., Westermark, B., Wasteson, A. & Heldin, C. H. Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor. Nature295, 419–420 (1982). ArticleCASPubMed Google Scholar
Hunter, T. & Cooper, J. A. Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell24, 741–752 (1981). ArticleCASPubMed Google Scholar
Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R. & Hunter, T. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell31, 263–273 (1982). ArticleCASPubMed Google Scholar
Ullrich, A. et al. Rat insulin genes: construction of plasmids containing the coding sequences. Science196, 1313–1319 (1977). ArticleCASPubMed Google Scholar
Sures, I., Goeddel, D. V., Gray, A. & Ullrich, A. Nucleotide sequence of human preproinsulin complementary DNA. Science208, 57–59 (1980). ArticleCASPubMed Google Scholar
Gray, A., Dull, T. J. & Ullrich, A. Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature303, 722–725 (1983). ArticleCASPubMed Google Scholar
Scott, J. et al. Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins. Science221, 236–240 (1983). ArticleCASPubMed Google Scholar
Dull, T. J., Gray, A., Hayflick, J. S. & Ullrich, A. Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature310, 777–781 (1984). ArticleCASPubMed Google Scholar
Ullrich, A., Gray, A., Berman, C. & Dull, T. J. Human β-nerve growth factor gene sequence highly homologous to that of mouse. Nature303, 821–825 (1983). ArticleCASPubMed Google Scholar
Chiu, I. M. et al. Nucleotide sequence analysis identifies the human c-sis proto-oncogene as a structural gene for platelet-derived growth factor. Cell37, 123–129 (1984). ArticleCASPubMed Google Scholar
Derynck, R., Roberts, A. B., Winkler, M. E., Chen, E. Y. & Goeddel, D. V. Human transforming growth factor-α: precursor structure and expression in E. coli. Cell38, 287–297 (1984). ArticleCASPubMed Google Scholar
Itakura, K. et al. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science198, 1056–1063 (1977). ArticleCASPubMed Google Scholar
Martial, J. A., Hallewell, R. A., Baxter, J. D. & Goodman, H. M. Human growth hormone: complementary DNA cloning and expression in bacteria. Science205, 602–607 (1979). ArticleCASPubMed Google Scholar
Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature309, 418–425 (1984). ArticleCASPubMed Google Scholar
Downward, J. et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature307, 521–527 (1984). ArticleCASPubMed Google Scholar
Yamamoto, T., Hihara, H., Nishida, T., Kawai, S. & Toyoshima, K. A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell34, 225–232 (1983). ArticleCASPubMed Google Scholar
Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature313, 756–761 (1985). ArticleCASPubMed Google Scholar
Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell40, 747–758 (1985). ArticleCASPubMed Google Scholar
Ullrich, A. et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J.5, 2503–2512 (1986). ArticleCASPubMedPubMed Central Google Scholar
Yarden, Y. et al. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature323, 226–232 (1986). ArticleCASPubMed Google Scholar
Yarden, Y. et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J.6, 3341–3351 (1987). ArticleCASPubMedPubMed Central Google Scholar
Coussens, L. et al. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature320, 277–280 (1986). ArticleCASPubMed Google Scholar
Riedel, H., Dull, T. J., Schlessinger, J. & Ullrich, A. A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature324, 68–70 (1986). ArticleCASPubMed Google Scholar
Schlessinger, J. Signal transduction by allosteric receptor oligomerization. Trends Biochem. Sci.13, 443–447 (1988). ArticleCASPubMed Google Scholar
Wiesmann, C. et al. Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell91, 695–704 (1997). ArticleCASPubMed Google Scholar
Wiesmann, C., Ultsch, M. H., Bass, S. H. & de Vos, A. M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature401, 184–188 (1999). ArticleCASPubMed Google Scholar
Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell110, 775–787 (2002). ArticleCASPubMed Google Scholar
Garrett, T. P. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell110, 763–773 (2002). ArticleCASPubMed Google Scholar
Kamata, T. & Feramisco, J. R. Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature310, 147–150 (1984). ArticleCASPubMed Google Scholar
Smith, M. R., DeGudicibus, S. J. & Stacey, D. W. Requirement for c-ras proteins during viral oncogene transformation. Nature320, 540–543 (1986). ArticleCASPubMedPubMed Central Google Scholar
Margolis, B. et al. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell57, 1101–1107 (1989). ArticleCASPubMed Google Scholar
Meisenhelder, J., Suh, P. G., Rhee, S. G. & Hunter, T. Phospholipase C-γ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell57, 1109–1122 (1989). ArticleCASPubMed Google Scholar
Moran, M. F. et al. Src homology region 2 domains direct protein–protein interactions in signal transduction. Proc. Natl Acad. Sci. USA87, 8622–8626 (1990). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, M., Mayer, B. J., Fukui, Y. & Hanafusa, H. Binding of transforming protein, p47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science248, 1537–1539 (1990). ArticleCASPubMed Google Scholar
Wolfman, A. & Macara, I. G. A cytosolic protein catalyzes the release of GDP from p21ras. Science248, 67–69 (1990). ArticleCASPubMed Google Scholar
Downward, J., Riehl, R., Wu, L. & Weinberg, R. A. Identification of a nucleotide exchange-promoting activity for p21ras. Proc. Natl Acad. Sci. USA87, 5998–6002 (1990). ArticleCASPubMedPubMed Central Google Scholar
Lowenstein, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell70, 431–442 (1992). ArticleCASPubMed Google Scholar
Matuoka, K., Shibata, M., Yamakawa, A. & Takenawa, T. Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries. Proc. Natl Acad. Sci. USA89, 9015–9019 (1992). ArticleCASPubMedPubMed Central Google Scholar
Matuoka, K., Shibasaki, F., Shibata, M. & Takenawa, T. Ash/Grb-2, a SH2/SH3-containing protein, couples to signaling for mitogenesis and cytoskeletal reorganization by EGF and PDGF. EMBO J.12, 3467–3473 (1993). ArticleCASPubMedPubMed Central Google Scholar
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCASPubMed Google Scholar
Bjorge, J. D., Chan, T. O., Antczak, M., Kung, H. J. & Fujita, D. J. Activated type I phosphatidylinositol kinase is associated with the epidermal growth factor (EGF) receptor following EGF stimulation. Proc. Natl Acad. Sci. USA87, 3816–3820 (1990). ArticleCASPubMedPubMed Central Google Scholar
Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell81, 727–736 (1995). ArticleCASPubMed Google Scholar
Zhong, Z., Wen, Z. & Darnell, J. E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science264, 95–98 (1994). ArticleCASPubMed Google Scholar
Yamauchi, T. et al. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature390, 91–96 (1997). ArticleCASPubMed Google Scholar
Moro, L. et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J.17, 6622–6632 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zwick, E. et al. Critical role of calcium-dependent epidermal growth factor receptor transactivation in PC12 cell membrane depolarization and bradykinin signaling. J. Biol. Chem.272, 24767–24770 (1997). ArticleCASPubMed Google Scholar
King, C. R., Borrello, I., Porter, L., Comoglio, P. & Schlessinger, J. Ligand-independent tyrosine phosphorylation of EGF receptor and the erbB-2/neu proto-oncogene product is induced by hyperosmotic shock. Oncogene4, 13–18 (1989). CASPubMed Google Scholar
Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature379, 557–560 (1996). ArticleCASPubMed Google Scholar
Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature402, 884–888 (1999). ArticleCASPubMed Google Scholar
Gschwind, A., Hart, S., Fischer, O. M. & Ullrich, A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J.22, 2411–2421 (2003). ArticleCASPubMedPubMed Central Google Scholar
Asakura, M. et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nature Med.8, 35–40 (2002). ArticleCASPubMed Google Scholar
Lemjabbar, H. & Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nature Med.8, 41–46 (2002). ArticleCASPubMed Google Scholar
Keates, S. et al. cag+Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells. J. Biol. Chem.276, 48127–48134 (2001). ArticleCASPubMed Google Scholar
Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science269, 230–234 (1995). ArticleCASPubMed Google Scholar
Miettinen, P. J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature376, 337–341 (1995). ArticleCASPubMed Google Scholar
Sibilia, M. & Wagner, E. F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science269, 234–238 (1995). ArticleCASPubMed Google Scholar
Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature378, 394–398 (1995). ArticleCASPubMed Google Scholar
Erickson, S. L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development124, 4999–5011 (1997). ArticleCASPubMed Google Scholar
Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature378, 390–394 (1995). ArticleCASPubMed Google Scholar
Luetteke, N. C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development126, 2739–2750 (1999). ArticleCASPubMed Google Scholar
Luetteke, N. C. et al. TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell73, 263–278 (1993). ArticleCASPubMed Google Scholar
Mann, G. B. et al. Mice with a null mutation of the TGFα gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell73, 249–261 (1993). ArticleCASPubMed Google Scholar
Iwamoto, R. et al. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl Acad. Sci. USA100, 3221–3226 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jackson, L. F. et al. Defective valvulogenesis in HB-EGF and _TACE_-null mice is associated with aberrant BMP signaling. EMBO J.22, 2704–2716 (2003). ArticleCASPubMedPubMed Central Google Scholar
Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature385, 729–733 (1997). ArticleCASPubMed Google Scholar
Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science282, 1281–1284 (1998). ArticleCASPubMed Google Scholar
Sunnarborg, S. W. et al. Tumor necrosis factor-α converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J. Biol. Chem.277, 12838–12845 (2002). ArticleCASPubMed Google Scholar
Sizeland, A. M. & Burgess, A. W. Anti-sense transforming growth factor α oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol. Biol. Cell3, 1235–1243 (1992). ArticleCASPubMedPubMed Central Google Scholar
Humphrey, P. A. et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA87, 4207–4211 (1990). ArticleCASPubMedPubMed Central Google Scholar
Malden, L. T., Novak, U., Kaye, A. H. & Burgess, A. W. Selective amplification of the cytoplasmic domain of the epidermal growth factor receptor gene in glioblastoma multiforme. Cancer Res.48, 2711–2714 (1988). CASPubMed Google Scholar
Peschard, P. & Park, M. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell3, 519–523 (2003). ArticleCASPubMed Google Scholar
Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev.12, 3663–3674 (1998). ArticleCASPubMedPubMed Central Google Scholar
Thien, C. B. & Langdon, W. Y. Tyrosine kinase activity of the EGF receptor is enhanced by the expression of oncogenic 70Z-Cbl. Oncogene15, 2909–2919 (1997). ArticleCASPubMed Google Scholar
Coussens, L. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science230, 1132–1139 (1985). ArticleCASPubMed Google Scholar
King, C. R., Kraus, M. H. & Aaronson, S. A. Amplification of a novel v-_erbB_-related gene in a human mammary carcinoma. Science229, 974–976 (1985). ArticleCASPubMed Google Scholar
Schechter, A. L. et al. The neu oncogene: an _erb-B_-related gene encoding a 185,000-Mr tumour antigen. Nature312, 513–516 (1984). ArticleCASPubMed Google Scholar
Drebin, J. A., Stern, D. F., Link, V. C., Weinberg, R. A. & Greene, M. I. Monoclonal antibodies identify a cell-surface antigen associated with an activated cellular oncogene. Nature312, 545–548 (1984). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235, 177–182 (1987). ArticleCASPubMed Google Scholar
Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244, 707–712 (1989). ArticleCASPubMed Google Scholar
Stern, D. F. & Kamps, M. P. EGF-stimulated tyrosine phosphorylation of p185neu: a potential model for receptor interactions. EMBO J.7, 995–1001 (1988). ArticleCASPubMedPubMed Central Google Scholar
King, C. R., Borrello, I., Bellot, F., Comoglio, P. & Schlessinger, J. Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. EMBO J.7, 1647–1651 (1988). ArticleCASPubMedPubMed Central Google Scholar
Graus-Porta, D., Beerli, R. R., Daly, J. M. & Hynes, N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J.16, 1647–1655 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hudziak, R. M. et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell. Biol.9, 1165–1172 (1989). CASPubMedPubMed Central Google Scholar
Fendly, B. M. et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res.50, 1550–1558 (1990). CASPubMed Google Scholar
Agus, D. B. et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell2, 127–137 (2002). ArticleCASPubMed Google Scholar
Kawamoto, T. et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc. Natl Acad. Sci. USA80, 1337–1341 (1983). ArticleCASPubMedPubMed Central Google Scholar
Sato, J. D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med.1, 511–529 (1983). CASPubMed Google Scholar
Yaish, P., Gazit, A., Gilon, C. & Levitzki, A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science242, 933–935 (1988). ArticleCASPubMed Google Scholar
Honegger, A. M. et al. Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell51, 199–209 (1987). ArticleCASPubMed Google Scholar
Honegger, A. M. et al. A mutant epidermal growth factor receptor with defective protein tyrosine kinase is unable to stimulate proto-oncogene expression and DNA synthesis. Mol. Cell. Biol.7, 4568–4571 (1987). CASPubMedPubMed Central Google Scholar
Redemann, N. et al. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants. Mol. Cell. Biol.12, 491–498 (1992). CASPubMedPubMed Central Google Scholar
Fry, D. W. et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science265, 1093–1095 (1994). ArticleCASPubMed Google Scholar
Osherov, N. & Levitzki, A. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur. J. Biochem.225, 1047–1053 (1994). ArticleCASPubMed Google Scholar
Wakeling, A. E. et al. Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res. Treat.38, 67–73 (1996). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature Med.2, 561–566 (1996). ArticleCASPubMed Google Scholar
Buchdunger, E. et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther.295, 139–145 (2000). CASPubMed Google Scholar
Joensuu, H. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med.344, 1052–1056 (2001). ArticleCASPubMed Google Scholar
Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nature Rev. Cancer2, 795–803 (2002). ArticleCAS Google Scholar
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285, 1182–1186 (1971). ArticleCASPubMed Google Scholar
de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science255, 989–991 (1992). ArticleCASPubMed Google Scholar
Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun.187, 1579–1586 (1992). ArticleCASPubMed Google Scholar
Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell72, 835–846 (1993). ArticleCASPubMed Google Scholar
Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N. & Williams, L. T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl Acad. Sci. USA90, 7533–7537 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature376, 66–70 (1995). ArticleCASPubMed Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCASPubMed Google Scholar
Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature362, 841–844 (1993). ArticleCASPubMed Google Scholar
Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature367, 576–579 (1994). ArticleCASPubMed Google Scholar
Millauer, B. et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res.56, 1615–1620 (1996). CASPubMed Google Scholar
Presta, L. G. et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res.57, 4593–4599 (1997). CASPubMed Google Scholar
Fong, T. A. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res.59, 99–106 (1999). CASPubMed Google Scholar
Shaheen, R. M. et al. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res.59, 5412–5416 (1999). CASPubMed Google Scholar
O'Farrell, A. M. et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood101, 3597–3605 (2003). ArticleCASPubMed Google Scholar
Wedge, S. R. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res.62, 4645–4655 (2002). CASPubMed Google Scholar
Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res.60, 2178–2189 (2000). CASPubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol.21, 4342–4349 (2003). ArticleCASPubMed Google Scholar
Bardelli, A. et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science300, 949 (2003). ArticleCASPubMed Google Scholar
Soriano, P. The PDGF α receptor is required for neural crest cell development and for normal patterning of the somites. Development124, 2691–2700 (1997). ArticleCASPubMed Google Scholar
Soriano, P. Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev.8, 1888–1896 (1994). ArticleCASPubMed Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCASPubMed Google Scholar
Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380, 435–439 (1996). ArticleCASPubMed Google Scholar