Opportunities and challenges of radiotherapy for treating cancer (original) (raw)
Thariat, J., Hannoun-Levi, J. M., Sun Myint, A., Vuong, T. & Gerard, J. P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol.10, 52–60 (2013). ArticleCASPubMed Google Scholar
Loeffler, J. S. & Durante, M. Charged particle therapy–optimization, challenges and future directions. Nat. Rev. Clin. Oncol.10, 411–424 (2013). ArticlePubMed Google Scholar
Lo, S. S. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat. Rev. Clin. Oncol.7, 44–54 (2010). ArticlePubMed Google Scholar
Withers, H. R. The 4Rs of radiotherapy in Advances in Radiation Biology Vol. 5 (eds Lett, J. T. & Alder, H.) 241–249 (New York: Academic Press, 1975). Google Scholar
Steel, G. G., McMillan, T. J. & Peacock, J. H. The 5Rs of radiobiology. Int. J. Radiat. Biol.56, 1045–1048 (1989). ArticleCASPubMed Google Scholar
Good, J. S. & Harrington, K. J. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin. Oncol. (R. Coll. Radiol.)25, 569–577 (2013). ArticleCAS Google Scholar
Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer8, 193–204 (2008). ArticleCASPubMed Google Scholar
Chinnaiyan, P., Allen, G. W. & Harari, P. M. Radiation and new molecular agents, part II: targeting HDAC, HSP90, IGF-1R, PI3K, and Ras. Semin. Radiat. Oncol.16, 59–64 (2006). ArticlePubMed Google Scholar
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science348, 124–128 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Fuks, Z. & Kolesnick, R. Engaging the vascular component of the tumor response. Cancer Cell8, 89–91 (2005). ArticleCASPubMed Google Scholar
Masterson, L. et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD010271 http://dx.doi.org/10.1002/14651858.CD010271.pub2 (2014). Google Scholar
Lomax, M. E., Folkes, L. K. & O'Neill, P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.)25, 578–585 (2013). ArticleCAS Google Scholar
Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51, 6304–6311 (1991). CASPubMed Google Scholar
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem.273, 5858–5868 (1998). ArticleCASPubMed Google Scholar
Wang, X. et al. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell Biol.27, 3098–3108 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Bekker-Jensen, S. & Mailand, N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst.)9, 1219–1228 (2010). ArticleCAS Google Scholar
Lieber, M. R. & Wilson, T. E. SnapShot: nonhomologous DNA end joining (NHEJ). Cell142, 496–496.e1 (2010). ArticleCASPubMed Google Scholar
San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem.77, 229–257 (2008). ArticleCASPubMed Google Scholar
Onn, I., Heidinger-Pauli, J. M., Guacci, V., Unal, E. & Koshland, D. E. Sister chromatid cohesion: a simple concept with a complex reality. Annu. Rev. Cell Dev. Biol.24, 105–129 (2008). ArticleCASPubMed Google Scholar
Maréchal, A. & Zou, L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res.25, 9–23 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Moore, S., Stanley, F. K. & Goodarzi, A. A. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task. DNA Repair (Amst.)17, 64–73 (2014). ArticleCAS Google Scholar
Takahashi, A. et al. Nonhomologous end-joining repair plays a more important role than homologous recombination repair in defining radiosensitivity after exposure to high-LET radiation. Radiat. Res.182, 338–344 (2014). ArticleCASPubMed Google Scholar
Averbeck, N. B. et al. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell Cycle13, 2509–2516 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Nakajima, N. I. et al. Pre-exposure to ionizing radiation stimulates DNA double strand break end resection, promoting the use of homologous recombination repair. PLoS ONE10, e0122582 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res.18, 134–147 (2008). ArticleCASPubMed Google Scholar
Hufnagl, A. et al. The link between cell-cycle dependent radiosensitivity and repair pathways: A model based on the local, sister-chromatid conformation dependent switch between NHEJ and HR. DNA Repair (Amst.)27, 28–39 (2015). ArticleCAS Google Scholar
Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J.23, 4868–4875 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Hentges, P., Waller, H., Reis, C. C., Ferreira, M. G. & Doherty, A. J. Cdk1 restrains NHEJ through phosphorylation of XRCC4-like factor Xlf1. Cell Rep.9, 2011–2017 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Sorensen, C. S. et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol.7, 195–201 (2005). ArticleCASPubMed Google Scholar
Bryant, C., Scriven, K. & Massey, A. J. Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human leukemia and lymphoma cells. Mol. Cancer13, 147 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Sears, C. R. & Turchi, J. J. Complex cisplatin-double strand break (DSB) lesions directly impair cellular non-homologous end-joining (NHEJ) independent of downstream damage response (DDR) pathways. J. Biol. Chem.287, 24263–24272 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol.13, 411–424 (2012). ArticleCASPubMed Google Scholar
Noel, G. et al. Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol. Cancer Ther.5, 564–574 (2006). ArticleCASPubMed Google Scholar
Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet376, 245–251 (2010). ArticleCASPubMed Google Scholar
Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361, 123–134 (2009). ArticleCASPubMed Google Scholar
Koppensteiner, R. et al. Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro. PLoS ONE9, e100041 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, L. et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest. New Drugs30, 2113–2120 (2012). ArticleCASPubMed Google Scholar
Reiss, K. A. et al. A phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin. Cancer Res. (2014).
Chow, J. P. et al. PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy. Mol. Cancer Ther.12, 2517–2528 (2013). ArticleCASPubMed Google Scholar
Nowsheen, S., Bonner, J. A. & Yang, E. S. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother. Oncol.99, 331–338 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Chatterjee, P. et al. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2–ERG fusion gene-expressing and _PTEN_-deficient prostate cancer cells. PLoS ONE8, e60408 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Castri, P. et al. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-κB-dependent signaling. Biochim. Biophys. Acta1843, 640–651 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Hunter, J. E. et al. NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699. Oncogene31, 251–264 (2012). ArticleCASPubMed Google Scholar
Feng, F. Y. et al. Targeted radiosensitization with PARP1 inhibition: optimization of therapy and identification of biomarkers of response in breast cancer. Breast Cancer Res. Treat.147, 81–94 (2014). ArticleCASPubMed Google Scholar
O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med.364, 205–214 (2011). ArticleCASPubMed Google Scholar
Patel, A. G., De Lorenzo, S. B., Flatten, K. S., Poirier, G. G. & Kaufmann, S. H. Failure of iniparib to inhibit poly(ADP-ribose) polymerase in vitro. Clin. Cancer Res.18, 1655–1662 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Morgan, M. A., Parsels, L. A., Maybaum, J. & Lawrence, T. S. Improving the efficacy of chemoradiation with targeted agents. Cancer Discov.4, 280–291 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Chapman, J. D. et al. Condensed chromatin and cell inactivation by single-hit kinetics. Radiat. Res.151, 433–441 (1999). ArticleCASPubMed Google Scholar
Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell144, 732–744 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Storch, K. et al. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res.70, 3925–3934 (2010). ArticlePubMed Google Scholar
Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res.39, 6489–6499 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Chiolo, I., Tang, J., Georgescu, W. & Costes, S. V. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat. Res.750, 56–66 (2013). ArticleCASPubMed Google Scholar
Jezkova, L. et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: gamma-rays and protons in action. Appl. Radiat. Isot.83 (Pt B), 128–136 (2014). ArticleCASPubMed Google Scholar
Falk, M., Lukasova, E. & Kozubek, S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res.704, 88–100 (2010). ArticleCASPubMed Google Scholar
Pugh, J. L. et al. Histone deacetylation critically determines T cell subset radiosensitivity. J. Immunol.193, 1451–1458 (2014). ArticlePubMedCAS Google Scholar
Kruhlak, M. J., Celeste, A. & Nussenzweig, A. Monitoring DNA breaks in optically highlighted chromatin in living cells by laser scanning confocal microscopy. Methods Mol. Biol.523, 125–140 (2009). ArticleCASPubMedPubMed Central Google Scholar
Becker, A., Durante, M., Taucher-Scholz, G. & Jakob, B. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells. PLoS ONE9, e92640 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Goodarzi, A. A., Jeggo, P. & Lobrich, M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst.)9, 1273–1282 (2010). ArticleCAS Google Scholar
Goodarzi, A. A. & Jeggo, P. A. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. Int. J. Mol. Sci.13, 11844–11860 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Lee, D. H. et al. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J.31, 2403–2415 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature456, 524–528 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Averbeck, N. B. & Durante, M. Protein acetylation within the cellular response to radiation. J. Cell Physiol.226, 962–967 (2011). ArticleCASPubMed Google Scholar
Rosato, R. R. & Grant, S. Histone deacetylase inhibitors in cancer therapy. Cancer Biol. Ther.2, 30–37 (2003). ArticlePubMed Google Scholar
Zhang, L. et al. Recent progress in the development of histone deacetylase inhibitors as anti-cancer agents. Mini Rev. Med. Chem.13, 1999–2013 (2013). ArticleCASPubMed Google Scholar
Camphausen, K. et al. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int. J. Cancer114, 380–386 (2005). ArticleCASPubMed Google Scholar
Cerna, D., Camphausen, K. & Tofilon, P. J. Histone deacetylation as a target for radiosensitization. Curr. Top. Dev. Biol.73, 173–204 (2006). ArticleCASPubMed Google Scholar
Shabason, J. E., Tofilon, P. J. & Camphausen, K. HDAC inhibitors in cancer care. Oncology (Williston Park)24, 180–185 (2010). Google Scholar
Jung, M. et al. Novel HDAC inhibitors with radiosensitizing properties. Radiat. Res.163, 488–493 (2005). ArticleCASPubMed Google Scholar
Konsoula, Z., Velena, A., Lee, R., Dritschilo, A. & Jung, M. Histone deacetylase inhibitor: antineoplastic agent and radiation modulator. Adv. Exp. Med. Biol.720, 171–179 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Chinnaiyan, P. et al. Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin. Cancer Res.14, 5410–5415 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Karagiannis, T. C., Kn, H. & El-Osta, A. The epigenetic modifier, valproic acid, enhances radiation sensitivity. Epigenetics1, 131–137 (2006). ArticlePubMed Google Scholar
Noguchi, H. et al. Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr. J.56, 245–249 (2009). ArticlePubMed Google Scholar
Ree, A. H. et al. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol.11, 459–464 (2010). ArticleCASPubMed Google Scholar
Chen, H. P., Zhao, Y. T. & Zhao, T. C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog.20, 35–47 (2015). ArticlePubMedPubMed Central Google Scholar
Ren, J. et al. HDAC as a therapeutic target for treatment of endometrial cancers. Curr. Pharm. Des.20, 1847–1856 (2014). ArticleCASPubMed Google Scholar
Nakajima, S. & Kitamura, M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic. Biol. Med.65, 162–174 (2013). ArticleCASPubMed Google Scholar
Yoon, J. Y., Ishdorj, G., Graham, B. A., Johnston, J. B. & Gibson, S. B. Valproic acid enhances fludarabine-induced apoptosis mediated by ROS and involving decreased AKT and ATM activation in B-cell-lymphoid neoplastic cells. Apoptosis19, 191–200 (2014). ArticleCASPubMed Google Scholar
Jeong, S. G. & Cho, G. W. Trichostatin a modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells. Cell Biochem. Funct.33, 37–43 (2014). ArticleCASPubMed Google Scholar
Park, S. et al. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones20, 149–157 (2015). ArticleCASPubMed Google Scholar
Wolf, I. M. et al. Histone deacetylases inhibition by SAHA/vorinostat normalizes the glioma microenvironment via xCT equilibration. Sci. Rep.4, 6226 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Sholler, G. S. et al. PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J. Cancer Ther. Res.2, 21 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature421, 499–506 (2003). ArticleCASPubMed Google Scholar
Wang, H. et al. The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst.)11, 146–156 (2012). ArticleCAS Google Scholar
Blattmann, C. et al. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys.78, 237–245 (2010). ArticleCASPubMed Google Scholar
Kachhap, S. K. et al. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS ONE5, e11208 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Ren, J. et al. Epigenetic interventions increase the radiation sensitivity of cancer cells. Curr. Pharm. Des.20, 1857–1865 (2014). ArticleCASPubMed Google Scholar
Brown, S. L., Kolozsvary, A., Liu, J., Ryu, S. & Kim, J. H. Histone deacetylase inhibitors protect against and mitigate the lethality of total-body irradiation in mice. Radiat. Res.169, 474–478 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Grabiec, A. M., Tak, P. P. & Reedquist, K. A. Function of histone deacetylase inhibitors in inflammation. Crit. Rev. Immunol.31, 233–263 (2011). ArticleCASPubMed Google Scholar
Kim, H. J. & Chuang, D. M. HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am. J. Transl. Res.6, 206–223 (2014). PubMedPubMed Central Google Scholar
Felice, C., Lewis, A., Armuzzi, A., Lindsay, J. O. & Silver, A. Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases. Aliment. Pharmacol. Ther.41, 26–38 (2015). ArticleCASPubMed Google Scholar
Chen, D. J. & Nirodi, C. S. The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin. Cancer Res.13, 6555–6560 (2007). ArticleCASPubMed Google Scholar
Kim, K. et al. Epidermal growth factor receptor vIII expression in U87 glioblastoma cells alters their proteasome composition, function, and response to irradiation. Mol. Cancer Res.6, 426–434 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Baumann, M. et al. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother. Oncol.83, 238–248 (2007). ArticleCASPubMed Google Scholar
Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med.354, 567–578 (2006). ArticleCASPubMed Google Scholar
Bonner, J. A. et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol.11, 21–28 (2010). ArticleCASPubMed Google Scholar
Ang, K. K. et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol.32, 2940–2950 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Debucquoy, A., Machiels, J. P., McBride, W. H. & Haustermans, K. Integration of epidermal growth factor receptor inhibitors with preoperative chemoradiation. Clin. Cancer Res.16, 2709–2714 (2010). ArticleCASPubMed Google Scholar
Kriegs, M. et al. Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest. Radiother. Oncol.http://dx.doi.org/10.1016/j.radonc.2015.02.018 (2015).
Dent, P. et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat. Res.159, 283–300 (2003). ArticleCASPubMed Google Scholar
Liccardi, G., Hartley, J. A. & Hochhauser, D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res.71, 1103–1114 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Knebel, A., Rahmsdorf, H. J., Ullrich, A. & Herrlich, P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J.15, 5314–5325 (1996). ArticlePubMedPubMed CentralCAS Google Scholar
Schmidt-Ullrich, R. K. et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene15, 1191–1197 (1997). ArticleCASPubMed Google Scholar
Kim, J., Adam, R. M. & Freeman, M. R. Trafficking of nuclear heparin-binding epidermal growth factor-like growth factor into an epidermal growth factor receptor-dependent autocrine loop in response to oxidative stress. Cancer Res.65, 8242–8249 (2005). ArticleCASPubMed Google Scholar
Kefaloyianni, E., Gaitanaki, C. & Beis, I. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal.18, 2238–2251 (2006). ArticleCASPubMed Google Scholar
Papaiahgari, S., Zhang, Q., Kleeberger, S. R., Cho, H. Y. & Reddy, S. P. Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS–EGFR–PI3K–Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid. Redox Signal.8, 43–52 (2006). ArticleCASPubMed Google Scholar
Han, W. & Lo, H. W. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett.318, 124–134 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Dittmann, K. et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J. Biol. Chem.280, 31182–31189 (2005). ArticleCASPubMed Google Scholar
Dittmann, K., Mayer, C. & Rodemann, H. P. Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther. Onkol.186, 1–6 (2010). ArticlePubMed Google Scholar
Liccardi, G., Hartley, J. A. & Hochhauser, D. Importance of EGFR/ERCC1 interaction following radiation-induced DNA damage. Clin. Cancer Res.20, 3496–3506 (2014). ArticleCASPubMed Google Scholar
Javvadi, P. et al. Threonine 2609 phosphorylation of the DNA-dependent protein kinase is a critical prerequisite for epidermal growth factor receptor-mediated radiation resistance. Mol. Cancer Res.10, 1359–1368 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, I. A. et al. Epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: potential role of histone deacetylase 6. Radiother. Oncol.92, 125–132 (2009). ArticleCASPubMed Google Scholar
Dittmann, K., Mayer, C., Rodemann, H. P. & Huber, S. M. EGFR cooperates with glucose transporter SGLT1 to enable chromatin remodeling in response to ionizing radiation. Radiother. Oncol.107, 247–251 (2013). ArticleCASPubMed Google Scholar
Dittmann, K. et al. Nuclear epidermal growth factor receptor modulates cellular radio-sensitivity by regulation of chromatin access. Radiother. Oncol.99, 317–322 (2011). ArticleCASPubMed Google Scholar
Vlashi, E. & Pajonk, F. Targeted cancer stem cell therapies start with proper identification of the target. Mol. Cancer Res.8, 291 (2010). ArticlePubMedPubMed Central Google Scholar
Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst.98, 1777–1785 (2006). ArticlePubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleCASPubMed Google Scholar
Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA104, 618–623 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y., Joo, K. M., Jin, J. & Nam, D. H. Cancer stem cells and their mechanism of chemo-radiation resistance. Int. J. Stem Cells2, 109–114 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Bourguignon, L. Y., Shiina, M. & Li, J. J. Hyaluronan–CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv. Cancer Res.123, 255–275 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
McCord, A. M., Jamal, M., Williams, E. S., Camphausen, K. & Tofilon, P. J. CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin. Cancer Res.15, 5145–5153 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Zielske, S. P., Spalding, A. C., Wicha, M. S. & Lawrence, T. S. Ablation of breast cancer stem cells with radiation. Transl. Oncol.4, 227–233 (2011). ArticlePubMedPubMed Central Google Scholar
Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl Acad. Sci. USA108, 16062–16067 (2011). ArticlePubMedPubMed Central Google Scholar
Zafarana, G. & Bristow, R. G. Tumor senescence and radioresistant tumor-initiating cells (TICs): let sleeping dogs lie! Breast Cancer Res.12, 111 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Dong, Q. et al. Radioprotective effects of BMI-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes. J. Invest. Dermatol.131, 1216–1225 (2011). ArticleCASPubMed Google Scholar
Pignalosa, D. & Durante, M. Overcoming resistance of cancer stem cells. Lancet Oncol.13, e187–e188 (2012). ArticlePubMed Google Scholar
Chen, T. et al. Effects of heterochromatin in colorectal cancer stem cells on radiosensitivity. Chin. J Cancer29, 270–276 (2010). ArticlePubMed Google Scholar
Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol.31, 28–35 (2015). ArticleCASPubMed Google Scholar
Lagadec, C., Vlashi, E., Della Donna, L., Dekmezian, C. & Pajonk, F. Radiation-induced reprogramming of breast cancer cells. Stem Cells30, 833–844 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Shoshani, O. & Zipori, D. Stress as a fundamental theme in cell plasticity. Biochim. Biophys. Acta1849, 371–377 (2015). ArticleCASPubMed Google Scholar
Chlon, T. M. et al. High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells. J. Virol.88, 11315–11326 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Gomez-Casal, R. et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol. Cancer12, 94 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Patel, S. S., Shah, K. A., Shah, M. J., Kothari, K. C. & Rawal, R. M. Cancer stem cells and stemness markers in oral squamous cell carcinomas. Asian Pac. J. Cancer Prev.15, 8549–8556 (2014). ArticlePubMed Google Scholar
Venere, M. et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ.21, 258–269 (2014). ArticleCASPubMed Google Scholar
Gilabert, M. et al. Poly(ADP-ribose) polymerase 1 (PARP1) overexpression in human breast cancer stem cells and resistance to olaparib. PLoS ONE9, e104302 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Yoshikawa, M. et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res.73, 1855–1866 (2013). ArticleCASPubMed Google Scholar
Greenow, K. & Clarke, A. R. Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Physiol. Rev.92, 75–99 (2012). ArticleCASPubMed Google Scholar
Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol.http://dx.doi.org/10.1038/nrclinonc.2015.61 (2015).
Mizugaki, H. et al. γ-secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. Br. J. Cancer106, 1953–1959 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Lin, J., Zhang, X. M., Yang, J. C., Ye, Y. B. & Luo, S. Q. γ-secretase inhibitor-I enhances radiosensitivity of glioblastoma cell lines by depleting CD133+ tumor cells. Arch. Med. Res.41, 519–529 (2010). ArticleCASPubMed Google Scholar
Lagadec, C. et al. Radiation-induced Notch signaling in breast cancer stem cells. Int. J. Radiat. Oncol. Biol. Phys.87, 609–618 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Diaz-Padilla, I. et al. A phase Ib combination study of RO4929097, a γ-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Invest. New Drugs31, 1182–1191 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
De Strooper, B. & Chavez Gutierrez, L. Learning by failing: ideas and concepts to tackle γ-secretases in Alzheimer disease and beyond. Annu. Rev. Pharmacol. Toxicol.55, 419–437 (2015). ArticleCASPubMed Google Scholar
Kim, S. H., Kim, J. H. & Fried, J. Enhancement of the radiation response of cultured tumor cells by chloroquine. Cancer32, 536–540 (1973). ArticleCASPubMed Google Scholar
Firat, E., Weyerbrock, A., Gaedicke, S., Grosu, A. L. & Niedermann, G. Chloroquine or chloroquine–PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PLoS ONE7, e47357 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Ratikan, J. A., Sayre, J. W. & Schaue, D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int. J. Radiat. Oncol. Biol. Phys.87, 761–768 (2013). ArticleCASPubMed Google Scholar
Balic, A. et al. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol. Cancer Ther.13, 1758–1771 (2014). ArticleCASPubMed Google Scholar
Xiao, W. et al. CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin. Exp. Metastasis29, 1–9 (2012). ArticleCASPubMed Google Scholar
Ni, J. et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate74, 602–617 (2014). ArticleCASPubMed Google Scholar
Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell24, 450–465 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, F. & Yang, Y. Suppression of the xCT–CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin. Breast Cancer Res. Treat.147, 203–210 (2014). ArticleCASPubMed Google Scholar
Takeuchi, S. et al. Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma. Neurol. India62, 42–47 (2014). ArticlePubMed Google Scholar
Hast, B. E. et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res.74, 808–817 (2014). ArticleCASPubMed Google Scholar
Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med.49, 1603–1616 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hayes, J. D. & Dinkova-Kostova, A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci.39, 199–218 (2014). ArticleCASPubMed Google Scholar
Buettner, G. R., Wagner, B. A. & Rodgers, V. G. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem. Biophys.67, 477–483 (2013). ArticleCASPubMed Google Scholar
Ma, T. et al. Dual-functional probes for sequential thiol and redox homeostasis sensing in live cells. Analyst140, 322–329 (2015). ArticleCASPubMed Google Scholar
Kruger, A. & Ralser, M. ATM is a redox sensor linking genome stability and carbon metabolism. Sci. Signal.4, pe17 (2011). ArticleCASPubMed Google Scholar
Shirwany, N. A. & Zou, M. H. AMPK: a cellular metabolic and redox sensor. A minireview. Front. Biosci. (Landmark Ed.)19, 447–474 (2014). ArticleCAS Google Scholar
Vazquez-Martin, A. et al. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist. Updat.14, 212–223 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Najbauer, J., Kraljik, N. & Nemeth, P. Glioma stem cells: markers, hallmarks and therapeutic targeting by metformin. Pathol. Oncol. Res.20, 789–797 (2014). ArticleCASPubMed Google Scholar
Spratt, D. E. et al. Metformin and prostate cancer: reduced development of castration-resistant disease and prostate cancer mortality. Eur. Urol.63, 709–716 (2013). ArticleCASPubMed Google Scholar
Skinner, H. D. et al. Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol.52, 1002–1009 (2013). ArticleCASPubMed Google Scholar
Ferro, A. et al. Evaluation of diabetic patients with breast cancer treated with metformin during adjuvant radiotherapy. Int. J. Breast Cancer2013, 659723 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Eckers, J. C., Kalen, A. L., Xiao, W., Sarsour, E. H. & Goswami, P. C. Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury. Int. J. Radiat. Oncol. Biol. Phys.87, 619–625 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Gao, Z. et al. Late ROS accumulation and radiosensitivity in SOD1-overexpressing human glioma cells. Free Radic. Biol. Med.45, 1501–1509 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Le, O. N. et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell9, 398–409 (2010). ArticlePubMedCAS Google Scholar
Sabin, R. J. & Anderson, R. M. Cellular Senescence—its role in cancer and the response to ionizing radiation. Genome Integr.2, 7 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Rodier, F. et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci.124, 68–81 (2011). ArticleCASPubMed Google Scholar
Durante, M., Reppingen, N. & Held, K. D. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol. Med.19, 565–582 (2013). ArticleCASPubMed Google Scholar
Coppe, J. P. et al. Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem.286, 36396–36403 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Westbrook, A. M. et al. The role of tumour necrosis factor-alpha and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis27, 77–86 (2012). ArticleCASPubMed Google Scholar
Schaue, D. & McBride, W. H. Links between innate immunity and normal tissue radiobiology. Radiation Res.173, 406–417 (2010). ArticleCASPubMed Google Scholar
Kansara, M. et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J. Clin. Invest.123, 5351–5360 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Klammer, H., Mladenov, E., Li, F. & Iliakis, G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett.356, 58–71 (2015). ArticleCASPubMed Google Scholar
Kim, K. et al. High throughput screening of small molecule libraries for modifiers of radiation responses. Int. J. Radiat. Biol.87, 839–845 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys.63, 655–666 (2005). ArticlePubMedPubMed Central Google Scholar
Formenti, S. C. & Demaria, S. Radiation therapy to convert the tumor into an in situ vaccine. Int. J. Radiat. Oncol. Biol. Phys.84, 879–880 (2012). ArticlePubMed Google Scholar
Schaue, D., Ratikan, J. A., Iwamoto, K. S. & McBride, W. H. Maximizing tumor immunity with fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys.83, 1306–1310 (2012). ArticleCASPubMed Google Scholar
Schaue, D. et al. T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin. Cancer Res.14, 4883–4890 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Liao, Y.-P., Meng, W. S. & McBride, W. H. Antigen presentation by dendritic cells is affected after irradiation [abstract]. Proc. Am. Assoc. Cancer Res.43, 480–481 (2002). Google Scholar
Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res.15, 5379–5388 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Butterfield, L. H. et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res.9, 998–1008 (2003). CASPubMed Google Scholar
Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov.5, 43–51 (2015). ArticleCASPubMed Google Scholar
Mullen, C. A., Coale, M. M., Lowe, R. & Blaese, R. M. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res.54, 1503–1506 (1994). CASPubMed Google Scholar
Pizova, K. et al. Photodynamic therapy for enhancing antitumour immunity. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub.156, 93–102 (2012). ArticleCASPubMed Google Scholar
Chen, F. H. et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin. Cancer Res.15, 1721–1729 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
McBride, W. H. Phenotype and functions of intratumoral macrophages. Biochim. Biophys. Acta865, 27–41 (1986). CASPubMed Google Scholar
Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol.25, 268–276 (2013). ArticleCASPubMed Google Scholar
Dougherty, G. J. & McBride, W. H. Immunoregulating activity of tumor-associated macrophages. Cancer Immunol. Immunother.23, 67–72 (1986). ArticleCASPubMed Google Scholar
Kikuchi, N. et al. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and TH1/TH2 balance. Respir. Res.11, 31 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Rockwell, C. E., Zhang, M., Fields, P. E. & Klaassen, C. D. TH2 skewing by activation of Nrf2 in CD4+ T cells. J. Immunol.188, 1630–1637 (2012). ArticlePubMedCAS Google Scholar
Schaue, D., Xie, M. W., Ratikan, J. A. & McBride, W. H. Regulatory T cells in radiotherapeutic responses. Front. Oncol.2, 90 (2012). PubMedPubMed CentralCAS Google Scholar
Tsai, C. S. et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-1 and COX-2, and promote tumor growth. Int. J. Radiat. Oncol. Biol. Phys.68, 499–507 (2007). ArticleCASPubMed Google Scholar
Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest.120, 694–705 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Tseng, D., Vasquez-Medrano, D. A. & Brown, J. M. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br. J. Cancer104, 1805–1809 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, F. H. et al. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. Int. J. Radiat. Oncol. Biol. Phys.86, 777–784 (2013). ArticlePubMed Google Scholar
Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res.73, 2782–2794 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Ahn, G. O. & Brown, J. M. Influence of bone marrow-derived hematopoietic cells on the tumor response to radiotherapy: experimental models and clinical perspectives. Cell Cycle8, 970–976 (2009). ArticlePubMedCAS Google Scholar
Mantovani, A. & Allavena, P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med.212, 435–445 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Tsai, J. H. et al. Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol. Ther.4, 1395–1400 (2005). ArticleCASPubMed Google Scholar
Johnson, D. B., Rioth, M. J. & Horn, L. Immune checkpoint inhibitors in NSCLC. Curr. Treat. Options Oncol.15, 658–669 (2014). ArticlePubMedPubMed Central Google Scholar
Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res.11, 728–734 (2005). CASPubMed Google Scholar
Pilones, K. A., Vanpouille-Box, C. & Demaria, S. Combination of radiotherapy and immune checkpoint inhibitors. Semin. Radiat. Oncol.25, 28–33 (2015). ArticlePubMed Google Scholar
Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest.124, 687–695 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Stamell, E. F., Wolchok, J. D., Gnjatic, S., Lee, N. Y. & Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys.85, 293–295 (2013). ArticlePubMed Google Scholar
Hiniker, S. M. et al. A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl. Oncol.5, 404–407 (2012). ArticlePubMedPubMed Central Google Scholar
Postow, M. A., Harding, J. & Wolchok, J. D. Targeting immune checkpoints: releasing the restraints on anti-tumor immunity for patients with melanoma. Cancer J.18, 153–159 (2012). ArticlePubMedPubMed CentralCAS Google Scholar