The ever-expanding myokinome: discovery challenges and therapeutic implications (original) (raw)
Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol.8, 457–465 (2012). CASPubMed Google Scholar
Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Comp. Physiol.2, 1143–1211 (2012). Google Scholar
Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell159, 738–749 (2014). CASPubMed Google Scholar
Starkie, R., Ostrowski, S., Jauffred, S., Febbraio, M. & Pedersen, B. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J.17, 884–886 (2003). CASPubMed Google Scholar
Walhin, J.-P., Richardson, J., Betts, J. & Thompson, D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J. Physiol.591, 6231–6243 (2013). CASPubMedPubMed Central Google Scholar
Hagobian, T. A. & Braun, B. Interactions between energy surplus and short-term exercise on glucose and insulin responses in healthy people with induced, mild insulin insensitivity. Metabolism55, 402–408 (2006). CASPubMed Google Scholar
Goldstein, M. S. Humoral nature of the hypoglycemic factor of muscular work. Diabetes10, 232–234 (1961). The first paper to propose that skeletal muscle might secrete 'exercise factors'. CASPubMed Google Scholar
Febbraio, M. A., Hiscock, N., Sacchetti, M., Fischer, C. P. & Pedersen, B. K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes53, 1643–1648 (2004). A significant finding in the identification of IL-6 as a secreted product of skeletal muscle that carries out endocrine functions. CASPubMed Google Scholar
Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev.88, 1379–1406 (2008). CASPubMed Google Scholar
Febbraio, M. A. & Pedersen, B. K. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J.16, 1335–1347 (2002). CASPubMed Google Scholar
Pal, M., Febbraio, M. A. & Whitham, M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol.92, 331–339 (2014). CASPubMed Google Scholar
Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat. Rev. Rheumatol.11, 86–97 (2015). CASPubMed Google Scholar
Görgens, S. W., Eckardt, K., Jensen, J., Drevon, C. A. & Eckel, J. Exercise and regulation of adipokine and myokine production. Prog. Mol. Biol. Transl. Sci.135, 313–336 (2015). PubMed Google Scholar
Schnyder, S. & Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone80, 115–125 (2015). CASPubMedPubMed Central Google Scholar
Uhlen, M. et al. Tissue-based map of the human proteome. Science347, 1260419 (2015). PubMed Google Scholar
Catoire, M., Mensink, M., Kalkhoven, E., Schrauwen, P. & Kersten, S. Identification of human exercise-induced myokines using secretome analysis. Physiol. Genom.46, 256–267 (2014). CAS Google Scholar
Geiger, T. et al. Initial quantitative proteomic map of twenty-eight mouse tissues using the SILAC mouse. Mol. Cell. Proteom.12, 1709–1722 (2013). CAS Google Scholar
Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA101, 6062–6067 (2004). CASPubMedPubMed Central Google Scholar
Azimifar, S. B., Nagaraj, N., Cox, J. & Mann, M. Cell-type-resolved quantitative proteomics of murine liver. Cell. Metab.20, 1076–1087 (2014). CASPubMed Google Scholar
Williams, E. G. et al. Systems proteomics of liver mitochondria function. Science352, aad0189 (2016). PubMed Google Scholar
Kawamoto, S., Matsumoto, Y., Mizuno, K., Okubo, K. & Matsubara, K. Expression profiles of active genes in human and mouse livers. Gene174, 151–158 (1996). CASPubMed Google Scholar
Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nat. Rev. Mol. Cell. Biol.5, 699–711 (2004). CASPubMed Google Scholar
Matthiesen, R. & Bunkenborg, J. Introduction to mass spectrometry-based proteomics. Methods Mol. Biol.1007, 1–45 (2013). CASPubMed Google Scholar
Hartwig, S. et al. Secretome profiling of primary human skeletal muscle cells. Biochim. Biophys. Acta1844, 1011–1017 (2014). CASPubMed Google Scholar
Henningsen, J., Rigbolt, K. T., Blagoev, B., Pedersen, B. K. & Kratchmarova, I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell. Proteom.9, 2482–2496 (2010). CAS Google Scholar
Norheim, F. et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab.301, E1013–E1021 (2011). CASPubMed Google Scholar
Henningsen, J., Pedersen, B. K. & Kratchmarova, I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol. Biosyst.7, 311–321 (2011). CASPubMed Google Scholar
Yoon, J. H. et al. Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics9, 51–60 (2009). CASPubMed Google Scholar
Yoon, J. H. et al. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance. Mol. Cell. Proteom.14, 882–892 (2015). CAS Google Scholar
Chan, C. Y., McDermott, J. C. & Siu, K. W. Secretome analysis of skeletal myogenesis using SILAC and shotgun proteomics. Int. J. Proteom.2011, 329467 (2011). Google Scholar
Raschke, S., Eckardt, K., Bjørklund Holven, K., Jensen, J. & Eckel, J. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS ONE8, e62008 (2013). CASPubMedPubMed Central Google Scholar
Haugen, F. et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol.298, C807–C816 (2010). CASPubMed Google Scholar
Deshmukh, A. S. et al. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell. Proteom.14, 841–853 (2015). The deepest quantitation of the skeletal muscle proteome thus far and an insight into the power of discovery-based proteomics. CAS Google Scholar
Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom.1, 845–867 (2002). CAS Google Scholar
Omenn, G. S. et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics5, 3226–3245 (2005). CASPubMed Google Scholar
States, D. J. et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol.24, 333–338 (2006). CASPubMed Google Scholar
Pernemalm, M., Lewensohn, R. & Lehtio, J. Affinity prefractionation for MS-based plasma proteomics. Proteomics9, 1420–1427 (2009). CASPubMed Google Scholar
Liu, X. et al. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom.18, 1249–1264 (2007). CASPubMedPubMed Central Google Scholar
Pocsfalvi, G. et al. Mass spectrometry of extracellular vesicles. Mass Spectrom. Rev.35, 3–21 (2015). PubMed Google Scholar
Harel, M., Oren-Giladi, P., Kaidar-Person, O., Shaked, Y. & Geiger, T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification. Mol. Cell. Proteom.14, 1127–1136 (2015). CAS Google Scholar
Forterre, A. et al. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS ONE9, e84153 (2014). PubMedPubMed Central Google Scholar
Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol.10, e1001450 (2012). CASPubMedPubMed Central Google Scholar
Lancaster, G. I. & Febbraio, M. A. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem.280, 23349–23355 (2005). CASPubMed Google Scholar
Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol.529, 237–242 (2000). CASPubMedPubMed Central Google Scholar
Wiles, M. V., Qin, W., Cheng, A. W. & Wang, H. CRISPR–Cas9-mediated genome editing and guide RNA design. Mamm. Genome26, 501–510 (2015). CASPubMedPubMed Central Google Scholar
Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol.34, 334–338 (2016). CASPubMedPubMed Central Google Scholar
Chambers, A. G., Percy, A. J., Simon, R. & Borchers, C. H. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Exp. Rev. Proteom.11, 137–148 (2014). CAS Google Scholar
Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom.11, 1475–1488 (2012). Google Scholar
Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell113, 483–494 (2003). CASPubMed Google Scholar
Nieman, D. C. et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J. Appl. Physiol.94, 1917–1925 (2003). CASPubMed Google Scholar
Ouchi, N. et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J. Biol. Chem.283, 32802–32811 (2008). CASPubMedPubMed Central Google Scholar
Hamrick, M. W., McNeil, P. L. & Patterson, S. L. Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact.10, 64–70 (2010). CASPubMed Google Scholar
McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature387, 83–90 (1997). CASPubMed Google Scholar
Hittel, D. S., Berggren, J. R., Shearer, J., Boyle, K. & Houmard, J. A. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes58, 30–38 (2009). CASPubMedPubMed Central Google Scholar
McPherron, A. C. & Lee, S. J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest.109, 595–601 (2002). CASPubMedPubMed Central Google Scholar
Wilkes, J. J., Lloyd, D. J. & Gekakis, N. Loss-of-function mutation in myostatin reduces tumor necrosis factor α production and protects liver against obesity-induced insulin resistance. Diabetes58, 1133–1143 (2009). CASPubMedPubMed Central Google Scholar
Camporez, J-. P. G. et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl Acad. Sci. USA113, 2212–2217 (2016). CASPubMedPubMed Central Google Scholar
Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol.10, 24–36 (2014). CASPubMed Google Scholar
Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci.103, 931–942 (1992). CASPubMed Google Scholar
Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab.298, E1244–E1253 (2010). CASPubMed Google Scholar
Yoshida, T. et al. Nicotine induces uncoupling protein 1 in white adipose tissue of obese mice. Int. J. Obes. Relat. Metab. Disord.23, 570–575 (1999). CASPubMed Google Scholar
Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature481, 463–468 (2012). PubMedPubMed Central Google Scholar
Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature418, 797–801 (2002). CASPubMed Google Scholar
Erickson, H. P. Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte2, 289–293 (2013). CASPubMedPubMed Central Google Scholar
Schumacher, M. A., Chinnam, N., Ohashi, T., Shah, R. S. & Erickson, H. P. The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J. Biol. Chem.288, 33738–33744 (2013). CASPubMedPubMed Central Google Scholar
Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell. Metab.22, 734–740 (2015). An example of how targeted proteomics can validate myokine expression in exercise contexts. CASPubMedPubMed Central Google Scholar
Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell. Metab.19, 302–309 (2014). CASPubMedPubMed Central Google Scholar
Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell157, 1279–1291 (2014). CASPubMedPubMed Central Google Scholar
Izumiya, Y., Hopkins, T., Morris, C., Sato, K. & Zeng, L. Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell. Metab.7, 159–172 (2008). CASPubMedPubMed Central Google Scholar
Kim, K. H. et al. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS ONE8, e63517 (2013). CASPubMedPubMed Central Google Scholar
Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology149, 6018–6027 (2008). CASPubMed Google Scholar
Hansen, J. S. et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol. Met.4, 551–560 (2015). An insightful examination of the source of circulating FGF21 during exercise. CAS Google Scholar
Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes63, 4057–4063 (2014). CASPubMedPubMed Central Google Scholar
Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem.286, 12983–12990 (2011). CASPubMedPubMed Central Google Scholar
Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev.26, 271–281 (2012). CASPubMedPubMed Central Google Scholar
Samms, R. J. et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep.11, 991–999 (2015). CASPubMed Google Scholar
Véniant, M. M. et al. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell. Metab.21, 731–738 (2015). PubMed Google Scholar
Degirolamo, C., Sabbà, C. & Moschetta, A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug. Discov.15, 51–69 (2016). CASPubMed Google Scholar
Roberts, L. D. et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell. Metab.19, 96–108 (2014). CASPubMedPubMed Central Google Scholar
Seldin, M. M., Peterson, J. M., Byerly, M. S., Wei, Z. & Wong, G. W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem.287, 11968–11980 (2012). CASPubMedPubMed Central Google Scholar
Seldin, M. M. et al. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J. Biol. Chem.288, 36073–36082 (2013). CASPubMedPubMed Central Google Scholar
Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell. Metab.11, 467–478 (2010). CASPubMedPubMed Central Google Scholar
Leitzmann, M. et al. European Code against Cancer 4th Edition: physical activity and cancer. Cancer Epidemiol.39 (Suppl. 1), 46–55 (2015). Google Scholar
Brown, J. C., Winters-Stone, K., Lee, A. & Schmitz, K. H. Cancer, physical activity, and exercise. Comp. Physiol.2, 2775–2809 (2012). Google Scholar
Goh, J. et al. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS ONE8, e80123 (2013). PubMedPubMed Central Google Scholar
Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell. Metab.23, 554–562 (2016). A comprehensive demonstration that voluntary wheel running in mouse models of cancer is a beneficial effect partially mediated by the myokine IL-6. CASPubMed Google Scholar
Hojman, P. et al. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am. J. Physiol. Endocrinol. Metab.301, E504–E510 (2011). CASPubMed Google Scholar
Aoi, W. et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut62, 882–889 (2013). CASPubMed Google Scholar
Kanzleiter, T. et al. The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem. Biophys. Res. Comm.450, 1089–1094 (2014). CASPubMed Google Scholar
Soria-Valles, C. et al. The anti-metastatic activity of collagenase-2 in breast cancer cells is mediated by a signaling pathway involving decorin and miR-21. Oncogene33, 3054–3063 (2014). CASPubMed Google Scholar
Araki, K. et al. Decorin suppresses bone metastasis in a breast cancer cell line. Oncology77, 92–99 (2009). CASPubMed Google Scholar
Laye, M. J. et al. Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue. J. Appl. Physiol.106, 161–168 (2009). CASPubMed Google Scholar
Carotta, S. Targeting, N. K. Cells for anticancer immunotherapy: clinical and preclinical approaches. Front. Immunol.7, 152 (2016). PubMedPubMed Central Google Scholar
Morikawa, T. et al. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with β-catenin (CTNNB1) status. Cancer Res.73, 1600–1610 (2013). CASPubMedPubMed Central Google Scholar
Je, Y., Jeon, J. Y., Giovannucci, E. L. & Meyerhardt, J. A. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int. J. Cancer133, 1905–1913 (2013). CASPubMed Google Scholar
Brekken, R. A. et al. Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J. Clin. Invest.111, 487–495 (2003). CASPubMedPubMed Central Google Scholar
Rahman, M., Chan, A. P. K. & Tai, I. T. A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS ONE6, e26390 (2011). CASPubMedPubMed Central Google Scholar
Nishizawa, H. et al. Musclin, a novel skeletal muscle-derived secretory factor. J. Biol. Chem.279, 19391–19395 (2004). CASPubMed Google Scholar
Subbotina, E. et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl Acad. Sci. USA112, 16042–16047 (2015). CASPubMedPubMed Central Google Scholar
Myers, J. et al. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med.346, 793–801 (2002). PubMed Google Scholar
Korpelainen, R. et al. Exercise capacity and mortality - a follow-up study of 3033 subjects referred to clinical exercise testing. Ann. Med.http://dx.doi.org/10.1080/07853890.2016.1178856 (2016).
Lua, L. H. L. & Chuan, Y. P. in Biopharmaceutical Production Technology Vol. 1 & Vol. 2 43–77 (Wiley-VCH Verlag GmbH & Co. KGaA, 2012). Google Scholar
Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci.99, 2557–2575 (2010). CASPubMedPubMed Central Google Scholar
Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug. Discov.2, 214–221 (2003). CASPubMed Google Scholar
Jazayeri, J. A. & Carroll, G. J. Fc-based cytokines: prospects for engineering superior therapeutics. Biodrugs22, 11–26 (2008). CASPubMed Google Scholar
Huang, C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr. Opin. Biotechnol.20, 692–699 (2009). CASPubMed Google Scholar
Rath, T. et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit. Rev. Biotechnol.35, 235–254 (2015). CASPubMed Google Scholar
Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug. Deliv. Rev.55, 329–347 (2003). CASPubMed Google Scholar
Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov.7, 771–782 (2008). CASPubMed Google Scholar
Popielarski, S. R., Hu-Lieskovan, S., French, S. W., Triche, T. J. & Davis, M. E. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results. Bioconjug. Chem.16, 1071–1080 (2005). CASPubMed Google Scholar
Febbraio, M. A. gp130 receptor ligands as potential therapeutic targets for obesity. J. Clin. Invest.117, 841–849 (2007). CASPubMedPubMed Central Google Scholar
Ostrowski, K., Rohde, T., Zacho, M., Asp, S. & Pedersen, B. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J. Physiol.508, 949–953 (1998). CASPubMedPubMed Central Google Scholar
Febbraio, M. A. et al. Hepatosplanchnic clearance of interleukin-6 in humans during exercise. Am. J. Physiol. Endocrinol. Metab.285, E397–E402 (2003). CASPubMed Google Scholar
Hiscock, N., Chan, M., Bisucci, T., Darby, I. & Febbraio, M. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J.18, 992–994 (2004). CASPubMed Google Scholar
Starkie, R. L., Arkinstall, M. J., Koukoulas, I., Hawley, J. A. & Febbraio, M. A. Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J. Physiol.533, 585–591 (2001). CASPubMedPubMed Central Google Scholar
Steensberg, A. et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol.537, 633–639 (2001). CASPubMedPubMed Central Google Scholar
Richter, E. A. & Galbo, H. Diabetes, insulin and exercise. Sports Med.3, 275–288 (1986). CASPubMed Google Scholar
Wasserman, D. H. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu. Rev. Physiol.57, 191–218 (1995). CASPubMed Google Scholar
Whitham, M. et al. Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1. J. Biol. Chem.287, 10771–10779 (2012). CASPubMedPubMed Central Google Scholar
Kelly, M. et al. AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem. Biophys. Res. Comm.320, 449–454 (2004). CASPubMed Google Scholar
Al-Khalili, L. et al. Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol. Endocrinol.20, 3364–3375 (2006). CASPubMed Google Scholar
Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes55, 2688–2697 (2006). CASPubMed Google Scholar
Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol.98, 1154–1162 (2005). CASPubMed Google Scholar
van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab.88, 3005–3010 (2003). CASPubMed Google Scholar
Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med.17, 1481–1489 (2011). CASPubMedPubMed Central Google Scholar
Shirazi, R. et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc. Natl Acad. Sci. USA110, 16199–16204 (2013). CASPubMedPubMed Central Google Scholar
ALS CNTF Treatment Study Group. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology46, 1244–1249 (1996).
Duff, E. & Baile, C. A. Ciliary neurotrophic factor: a role in obesity? Nutr. Rev.61, 423–426 (2003). PubMed Google Scholar
Ettinger, M. P. et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. J. Am. Med. Assoc.289, 1826–1832 (2003). CAS Google Scholar
Kraakman, M. et al. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes. Metab.15 (Suppl. 3), 170–175 (2013). CAS Google Scholar
Tsiloulis, T. & Watt, M. J. Exercise and the regulation of adipose tissue metabolism. Prog. Mol. Biol. Transl. Sci.135, 175–201 (2015). CASPubMed Google Scholar
Vosselman, M. J. et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int. J. Obes.39, 1696–1702 (2015). CAS Google Scholar