Hit and lead generation: beyond high-throughput screening (original) (raw)
Drews, J. Drug discovery: A historical perspective. Science287, 1960–1964 (2000). ArticleCAS Google Scholar
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCAS Google Scholar
Knowles, J. & Gromo, G. Target selection in drug discovery. Nature Rev. Drug Discov.2, 63–69 (2003). ArticleCAS Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov.1, 727–730 (2002). ArticleCAS Google Scholar
Lenz, G. R., Nash, H. M. & Jindal, A. Chemical ligands, genomics and drug discovery. Drug Discov. Today5, 145–156 (2000). ArticleCAS Google Scholar
Hodgson, J. ADMET — turning chemicals into drugs. Nature Biotechnol.19, 722–726 (2001). ArticleCAS Google Scholar
Proudfoot, J. R. Drugs, leads, and drug-likeness: An analysis of some recently launched drugs. Bioorg. Med. Chem. Lett.12, 1647–1650 (2002). ArticleCAS Google Scholar
Alanine, A., Nettekoven, M., Roberts, E. & Thomas, A. Lead generation — enhancing the success of drug discovery by investing into the hit to lead process. Combin. Chem. High Throughput Screen.6, 51–66 (2003). ArticleCAS Google Scholar
Boguslavsky, J. Minimizing risk in 'Hits to Leads'. Drug Discov. & Develop.4, 26–30 (2001). Google Scholar
Bleicher, K. H. Chemogenomics: bridging a drug discovery gap. Curr. Med. Chem.9, 2077–2084 (2002). ArticleCAS Google Scholar
Bajorath, J. Integration of virtual and high-throughput screening. Nature Rev. Drug Discov.1, 882–894 (2002). This review article covers the current concepts of integrating both virtual and high-throughput screening. ArticleCAS Google Scholar
Teague, J. S., Davis, A. M., Leeson, P. D. & Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl.38, 3743–3748 (1999). ArticleCAS Google Scholar
Walters, P. & Murcko, M. A. Prediction of 'drug-likeness' Adv. Drug Deliv. Rev.54, 255–271 (2002). ArticleCAS Google Scholar
Martin, E. J. & Critchlow, R. E. Beyond mere diversity: tailoring combinatorial libraries for drug discovery. J. Comb. Chem.1, 32–45 (1999). ArticleCAS Google Scholar
Menard, P. R., Mason, J. S., Morize I. & Bauerschmidt, S. Chemistry space metrics in diversity analysis, library design and compound selection. J. Chem. Inf. Comput. Sci.38, 1204–1213 (1998). ArticleCAS Google Scholar
Roche, O. et al. Development of a virtual screening method for identification of 'Frequent Hitters' in compound libraries. J. Med. Chem.45, 137–142 (2002). ArticleCAS Google Scholar
Balkenhohl, F., von dem Busche-Hünnefeld, C., Lansky, A. & Zechel, C. Combinatorial synthesis of small organic molecules. Angew. Chem. Int. Ed. Engl.35, 2288–2337 (1996). ArticleCAS Google Scholar
Böhm, H. -J. & Schneider, G. (eds). Virtual Screening for Bioactive Molecules (Wiley–VCH, Weinheim, 2000). An excellent compendium of current virtual screening methods. Book Google Scholar
Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci.41, 856–864 (2001). ArticleCAS Google Scholar
Crossley, R. From hits to leads, focusing the eyes of medicinal chemistry. Modern Drug Discov.5, 18–22 (2002). CAS Google Scholar
Van Dogen, M., Weigelt, J., Uppenberg, J., Schultz, J. & Wikström, M. Structure-based screening and design in drug discovery. Drug Discov. Today7, 471–477 (2002). Article Google Scholar
Carr, R. & Jhoti, H. Structure-based screening of low affinity compounds. Drug Discov. Today7, 522–527 (2002). ArticleCAS Google Scholar
Huang, L., Lee, A. & Ellman, J. A. Identification of potent and selective mechanism-based inhibitors of the cysteine protease cruzain using solid-phase parallel synthesis. J. Med. Chem.45, 676–684 (2002). ArticleCAS Google Scholar
Patchett, A. A. & Nargund, R. P. Privileged structures — an update. Annu. Rep. Med. Chem.35, 289–298 (2000). CAS Google Scholar
Bleicher, K. H., Wütherich, Y., Adam, G., Hoffmann, T. & Sleight, A. J. Parallel solution- and solid-phase synthesis of spiropyrrolo-pyrroles as novel NK-1 receptor ligands. Bioorg. Med. Chem. Lett.12, 3073–3076 (2002). ArticleCAS Google Scholar
Stahl, M. et al. A validation study on the practical use of automated de novo design. J. Comput.-Aided Mol. Des.16, 459–478 (2002). ArticleCAS Google Scholar
Schneider, G. et al. Virtual screening for bioactive molecules by de novo design. Angew. Chem Int. Ed. Engl.39, 4130–4133 (2000). ArticleCAS Google Scholar
Schneider, G. & Böhm, H. -J. Virtual screening and fast automated docking methods. Drug Discov. Today7, 64–70 (2002). ArticleCAS Google Scholar
Lipinski, C., Lombardo, F., Dominy, B. & Feeney, P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.23, 3–25 (1997). A landmark publication based on retrospective data analysis for bioavailability resulting in the 'rule-of-five'. ArticleCAS Google Scholar
Cariello, N. F. et al. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Mutagenesis17, 321–329 (2002). ArticleCAS Google Scholar
Sadowski, J. & Kubinyi, H. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem.41, 3325–3329 (1998). ArticleCAS Google Scholar
Zuegge, J. et al. A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries. Quant. Struct.-Act. Relat.21, 249–256 (2002). ArticleCAS Google Scholar
Roche, O. et al. A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. Chembiochem3, 455–459 (2002). ArticleCAS Google Scholar
Schneider, G., Neidhart, W., Giller, T. & Schmid, S. 'Scaffold hopping' by topological pharmacophore search: a contribution to virtual screening. Angew. Chem Int. Ed. Engl.38, 2894–2896 (1999). ArticleCAS Google Scholar
Mason, J. S., Good, A. C. & Martin, E. J. 3-D Pharmacophores in drug discovery. Curr. Pharm. Des.7, 567–597 (2001). ArticleCAS Google Scholar
Bissantz, C., Folkers, G. & Rognan, D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem.43, 4759–4767 (2000). ArticleCAS Google Scholar
Duckworth, D. M. & Sanseau, P. In silico identification of novel therapeutic targets. Drug Discov. Today7, 64–69 (2002). Article Google Scholar
Lee, D. K. et al. Identification of four human G-protein-coupled receptors expressed in the brain. Mol. Brain Res.86, 13–22 (2001). This paper describes the successful identification of orphan G-protein-coupled receptors initiated by bioinformatic approaches. ArticleCAS Google Scholar
Alaimo, P. J., Shogren-Knaak, M. A. & Shokat, K. M. Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol.5, 360–367 (2001). ArticleCAS Google Scholar
McGregor, M. J. & Pallai, P. V. Clustering of large databases of compounds: using the MDL “keys” as structural descriptors. J. Chem. Inf. Comp. Sci.37, 443–448 (1997). ArticleCAS Google Scholar
Stanton, D. T. Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J. Chem. Inf. Com. Sci.39, 11–20 (1999). ArticleCAS Google Scholar
Sprague, P. W. Automated chemical hypothesis generation and database searching with CATALYST. Perspect. Drug Discov. Design3, 1–20 (1995). ArticleCAS Google Scholar
Liebeschuetz, J. W. et al. PRO_SELECT: combining structure-based drug design and array-based chemistry for rapid lead discovery. 2. The development of a series of highly potent and selective Factor Xa inhibitors. J. Med. Chem.45, 1221–1232 (2002). ArticleCAS Google Scholar
Boehm, H. -J. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J. Comput.-Aided Mol. Des.12, 309–323 (1998). Article Google Scholar