GLIA: A novel drug discovery target for clinical pain (original) (raw)

References

  1. McQuay, H., Carroll, D., Jadad, A. R., Wiffen, P. & Moore, A. Anticonvulsant drugs for management of pain: a systematic review. Brit. Med. J. 311, 1047–1052 (1995).
    CAS PubMed PubMed Central Google Scholar
  2. McQuay, H. J. et al. A systematic review of antidepressants in neuropathic pain. Pain 68, 217–227 (1996).
    CAS PubMed Google Scholar
  3. Watkins, L. R. & Maier, S. F. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82, 981–1011 (2002). This article reviews the immunology of peripheral nerves, dorsal root ganglia and spinal nerves; the evidence from animal models of immune involvement in pathological pain; and the evidence that diverse human clinical pain syndromes involve an immune component.
    CAS PubMed Google Scholar
  4. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000). An excellent review of neuronal changes implicated in creation and maintenance of exaggerated pain states.
    CAS PubMed Google Scholar
  5. Pekny, M. in Progress in Brain Research: Glial Cell Funtion (eds Castellano-Lopez, B. & Nieto-Sampedro, M.) 23–30 (Elsevier, Amsterdam, 2001).
    Google Scholar
  6. Benveniste, E. N. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 700–716 (Oxford, New York, 1995).
    Google Scholar
  7. Perry, V. H. Macrophages and the Nervous System (Landes, Austin, 1994).
    Google Scholar
  8. Gehrmann, J. & Kreutzberg, G. W. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 883–904 (Oxford, New York, 1995).
    Google Scholar
  9. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999). Synapses can no longer be considered as simply a presynaptic neuron and a postsynaptic neuron. Rather, three entities are involved, the third being astrocytes. A review of the evidence that astrocytes 'listen' to neuronal communication and 'talk back' to the neurons is provided.
    CAS PubMed Google Scholar
  10. Garrison, C. J., Dougherty, P. M., Kajander, K. C. & Carlton, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 565, 1–7 (1991). This research article is historically important as it provides the first evidence that nerve damage, which creates neuropathic pain, also activates spinal cord glial
    CAS PubMed Google Scholar
  11. Garrison, C. J., Dougherty, P. M. & Carlton, S. M. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp. Neurol. 129, 237–243 (1994). Historically important, this article provides the first evidence that drugs that inhibit neuropathic pain also inhibit glial activation. It provided the first evidence that, at minimum, neuropathic pain and glial activation are strongly correlated.
    CAS PubMed Google Scholar
  12. Watkins, L. R., Milligan, E. D. & Maier, S. F. Glial activation: a driving force for pathological pain. Trends Neurosci. 24, 450–455 (2001). Evidence is reviewed that spinal cord glia are key mediators in the creation and maintenance of exaggerated pain states.
    CAS PubMed Google Scholar
  13. Berg-Johnsen, J., Paulsen, R. E., Fonnum, F. & Langmoen, I. A. Changes in evoked potentials and amino acid content during fluorocitrate action studied in rat hippocampal cortex. Exp. Brain Res. 96, 241–246 (1993).
    CAS PubMed Google Scholar
  14. Hassel, B., Paulsen, R. E., Johnson, A. & Fonnum, F. Selective inhibition of glial cell metabolism by fluorocitrate. Brain Res. 249, 120–124 (1992).
    Google Scholar
  15. Tikka, T. M. & Koistinaho, J. E. Minocycline provides neuroprotection against _N_-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 7527–7533 (2001).
    CAS PubMed Google Scholar
  16. Meller, S. T., Dykstra, C., Grzbycki, D., Murphy, S. & Gebhart, G. F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33, 1471–1478 (1994). Provides the first evidence that disrupting glial activation blocks exaggerated pain responses. In addition, it is the first evidence that activation of glia, in their role as immune cells, is sufficient to induce exaggerated pain responses.
    CAS PubMed Google Scholar
  17. Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J. & Maier, S. F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71, 225–235 (1997).
    CAS PubMed Google Scholar
  18. Milligan, E. D. et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res. 861, 105–116 (2000).
    CAS PubMed Google Scholar
  19. Milligan, E. D. et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain. J. Neurosci. 23, 1026–1040 (2003).
    CAS PubMed PubMed Central Google Scholar
  20. Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 306, 624–630 (2003). Anatomical and pharmacological evidence supports the intriguing hypothesis that microglia are key in the initiation of exaggerated pain states, but that astrocytes (and not microglia) are crucial for the maintenance of enhanced pain.
    CAS PubMed Google Scholar
  21. Ledeboer, A. et al. Selective inhibition of spinal cord microglial activation attenuates mechanical allodynia in rat models of pathological pain. Proc. Soc. Neurosci. (in the press).
  22. Cholewinski, A. J., Hanley, M. R. & Wilkin, G. P. A phosphoinositide-linked peptide response in astrocytes: evidence for regional heterogeneity. Neurochem. Res. 13, 389–394 (1988).
    CAS PubMed Google Scholar
  23. Beaujouan, J. C. et al. Marked regional heterogeneity of 125I-Bolton Hunter substance P binding and substance P-induced activation of phospholipase C in astrocyte cultures from the embryonic or newborn rat. J. Neurochem. 54, 669–675 (1990).
    CAS PubMed Google Scholar
  24. Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci. 23, 2899–2910 (2003).
    CAS PubMed PubMed Central Google Scholar
  25. Ochalski, P. A., Frankenstein, U. N., Hertzberg, E. L. & Nagy, J. I. Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neurosci. 76, 931–945 (1997).
    CAS Google Scholar
  26. Li, W. E. & Nagy, I. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal–glial interactions. Neurosci. 97, 113–123 (2000).
    CAS Google Scholar
  27. Palma, C. et al. Functional characterization of substance P receptors on cultured human spinal cord astrocytes: synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production. Glia 21, 183–193 (1997).
    CAS PubMed Google Scholar
  28. Tikka, T., Fiebich, B. L., Goldsteins, G., Keinanen, R. & Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 2580–2588 (2001).
    CAS PubMed PubMed Central Google Scholar
  29. Bartlett, P. F. Pluripotential hemopoietic stem cells in adult mouse brain. Proc. Natl Acad. Sci. USA 79, 2722–2725 (1982).
    CAS PubMed PubMed Central Google Scholar
  30. Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. Mature microglia resemble immature antigen-presenting cells. Glia 22, 72–85 (1998).
    CAS PubMed Google Scholar
  31. Fedoroff, S. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 162–184 (Oxford, New York, 1995).
    Google Scholar
  32. Lee, J. C., Mayer-Proschel, M. & Rao, M. S. Gliogenesis in the central nervous system. Glia 30, 105–121 (2000).
    CAS PubMed Google Scholar
  33. Watkins, L. R., Hansen, M. K., Nguyen, K. T., Lee, J. E. & Maier, S. F. Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for non-molecular biologists. Life Sci. 65, 449–481 (1999).
    CAS PubMed Google Scholar
  34. Milligan, E. D. et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J. Neurosci. 21, 2808–2819 (2001). The first demonstration that activation of spinal cord glia, in their role as immune cells; (i) is sufficient to induce thermal hyperalgesia and mechanical allodynia, (ii) induces the production and release of pro-inflammatory cytokines, and (iii) this pro-inflammatory cytokine release is causal to the resultant pain enhancement.
    CAS PubMed PubMed Central Google Scholar
  35. Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).
    CAS PubMed PubMed Central Google Scholar
  36. Watkins, L. R., Milligan, E. D. & Maier, S. F. in Advances in Pain Research and Therapy (eds Dostrovsky, J. O., Carr, D. B. & Koltzenberg, M.) 369–385 (IASP, Seattle, 2003).
    Google Scholar
  37. Verge, G. et al. Mapping fractalkine and its receptor (CX3CR1) in a rat model of sciatic inflammatory neuropathy (SIN). Proc. Soc. Neurosci. 28, 455.3 (2002).
    Google Scholar
  38. Chapman, G. A. et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci. 20, RC87 (1–5) (2000).
    CAS PubMed PubMed Central Google Scholar
  39. Dinarello, C. A. in Cytokines and Pain (eds Watkins, L. R. & Maier, S. F.) 1–19 (Birkhauser, Basel, 1999). An excellent review of pro-inflammatory cytokine molecular biology and cellular signalling, with a focus on their role in pain facilitation.
    Google Scholar
  40. Maier, S. F. & Watkins, L. R. Cytokines for psychologists: implications of bi-directional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol. Rev. 105, 83–107 (1998). This review article examines the role of pro-inflammatory cytokines in a wide array of peripheral, brain and spinal cord processes. It is aimed at non-specialists to introduce them to this research area
    CAS PubMed Google Scholar
  41. DeLeo, J. A., Colburn, R. W., Nochols, M. & Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res. 16, 695–700 (1996).
    CAS PubMed Google Scholar
  42. Falchi, M., Ferrara, G., Gharib, C. & Dib, B. Hyperalgesic effect of intrathecally administered interleukin-1 in rats. Drugs Exp. Clin. Res. 27, 97–101 (2001).
    CAS PubMed Google Scholar
  43. Reeve, A. J., Patel, S., Fox, A., Walker, K. & Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain 4, 247–257 (2000).
    CAS PubMed Google Scholar
  44. Tadano, T. et al. Induction of nociceptive responses by intrathecal injection of interleukin-1 in mice. Life Sci. 65, 255–261 (1999).
    CAS PubMed Google Scholar
  45. Oka, T. & Hori, T. in Cytokines and Pain (eds Watkins, L. R. & Maier, S. F.) 183–204 (Birkhauser, Basel, 1999).
    Google Scholar
  46. Sweitzer, S. M., Martin, D. & DeLeo, J. A. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neurosci. 103, 529–539 (2001).
    CAS Google Scholar
  47. Clark, A. R., Dean, J. L. E. & Saklatvala, J. Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett. 546, 37–44 (2003).
    CAS PubMed Google Scholar
  48. Svensson, C. I. et al. Activation of p38 MAP kinase in spinal microglia is a critical link in inflammation induced spinal pain processing. J. Neurochem. 86, 1534–1544 (2003).
    CAS PubMed Google Scholar
  49. Svensson, C. I., Hua, X. Y., Protter, A. A., Powell, H. C. & Yaksh, T. L. Spinal p38 MAP kinase is necessary for NMDA induced spinal PGE2 release and thermal hyperalgesia. Neuroreport 14, 1153–1157 (2003).
    CAS PubMed Google Scholar
  50. Schafers, M., Svensson, C. I., Sommer, C. & Sorkin, L. S. Tumor necrosis factor induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci. 23, 2517–2521 (2003).
    CAS PubMed PubMed Central Google Scholar
  51. Jones, T. L. et al. Involvement of p38α MAPK in capsaicin-induced hyperalgesia. Proc. Soc. Neurosci. 28, 56.5 (2002).
    Google Scholar
  52. Milligan, E. D. et al. Systemic administration of CNI-1493, a p38 MAP kinase inhibitor, blocks HIV-1 gp120-induced enhanced pain states in rats. J. Pain 2, 326–333 (2001).
    CAS PubMed Google Scholar
  53. Sweitzer, S. M., Schubert, P. & DeLeo, J. A. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J. Pharmacol. Exp. Ther. 297, 1210–1217 (2001).
    CAS PubMed Google Scholar
  54. Winkelstein, B. A., Rutkowski, M. D., Sweitzer, S. M., Pahl, J. L. & DeLeo, J. A. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J. Comp. Neurol. 2, 127–139 (2001).
    Google Scholar
  55. Hashizume, H., Rutkowski, M. D., Weinstein, J. N. & DeLeo, J. A. Central administration of methotrexate reduces mechanical allodynia in an animal model of radiculopathy/sciatica. Pain 87, 159–169 (2000).
    CAS PubMed Google Scholar
  56. Sommer, C., Marziniak, M. & Myers, R. R. The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve. Pain 74, 83–91 (1998).
    CAS PubMed Google Scholar
  57. George, A., Marziniak, M., Schafers, M., Toyka, K. V. & Sommer, C. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-α, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain 88, 267–275 (2000).
    CAS PubMed Google Scholar
  58. Eriksson, T., Bjorkman, S. & Hoglund, P. Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol. 5, 365–376 (2001).
    Google Scholar
  59. Clemmensen, O. J., Olsen, P. Z. & Andersen, K. E. Thalidomide neurotoxicity. Arch. Dermatol. 120, 338–341 (1984).
    CAS PubMed Google Scholar
  60. Strle, K. et al. Interleukin-10 in the brain. Crit. Rev. Immunol. 21, 427–449 (2001).
    CAS PubMed Google Scholar
  61. Moore, K. W., deWaal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).
    CAS PubMed Google Scholar
  62. Ledeboer, A. et al. Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J. Neuroimmunol. 136, 94–103 (2003).
    CAS PubMed Google Scholar
  63. Yu, C. -G., Fairbanks, C. A., Wilcox, G. L. & Yezierski, R. P. Effects of agmatine, interleukin-10 and cyclosporin on spontaneous pain behavior following excitotoxic spinal cord injury in rats. J. Pain 4, 129–140 (2003).
    CAS PubMed Google Scholar
  64. Laughlin, T. M., Bethea, J. R., Yezierski, R. P. & Wilcox, G. L. Cytokine involvement in dynorphin-induced allodynia. Pain 84, 159–167 (2000).
    CAS PubMed Google Scholar
  65. Plunkett, J. A., Yu, C. -G., Easton, J. M., Bethea, J. R. & Yezierski, R. P. Effects of interelukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exper. Neurol. 168, 144–154 (2001).
    CAS Google Scholar
  66. Hornfeldt, C. S. & Larson, A. A. Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord. Eur. J. Pharmacol. 179, 307–313 (1990).
    CAS PubMed Google Scholar
  67. Yrjanheikki, J., Keinanen, R., Pellikka, M., Hokfelt, T. & Korstinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Neurobiology 95, 15769–15774 (1998).
    CAS Google Scholar
  68. Lin, S. et al. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition of p38 MAP kinase in rat cerebellar granule neurons. Neurosci. Lett. 315, 61–64 (2001).
    CAS PubMed Google Scholar
  69. Kary, S. & Burmester, G. R. Anakinra: the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int. J. Clin. Pract. 57 (2003).
  70. Calabrese, L. H. Molecular differences in anticytokine therapies. Clin. Exp. Rheumatol. 21, 241–248 (2003).
    CAS PubMed Google Scholar
  71. Mielke, R. et al. Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: overview of phase I and phase II clinical trials. Alzheimer Dis. Assoc. Disord. 12, S29–35 (1998).
    CAS PubMed Google Scholar
  72. Rother, M. et al. Propentofylline in the treatment of Alzheimer's disease and vascular dementia: a review of phase III trials. Dement. Geriatr. Cogn. Disord. 9, 36–43 (1998).
    CAS PubMed Google Scholar
  73. Plaschke, K. et al. Neuromodulatory effect of propentofylline on rat brain under acute and long-term hypoperfusion. Br. J. Pharmacol. 133, 107–116 (2001).
    CAS PubMed PubMed Central Google Scholar
  74. Wu, Y. P., McRae, A., Rudolphi, K. & Ling, E. A. Propentofylline attenuates microglial reaction in the rat spinal cord induced by middle cerebral artery occlusion. Neurosci. Lett. 260, 17–20 (1999).
    CAS PubMed Google Scholar
  75. Numagami, Y., Marro, P. J., Mishra, O. P. & Delivoria-Papadopoulos, M. Effect of propentofylline on free radical generation during cerebral hypoxia in the newborn piglet. Neuroscience 84, 1127–1133 (1998).
    CAS PubMed Google Scholar
  76. Schubert, P. et al. Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann. NY Acad. Sci. 903, 24–33 (2000).
    CAS PubMed Google Scholar
  77. Schubert, P., Ogata, T., Marchini, C., Ferroni, S. & Rudolphi, K. Protective mechanisms of adenosine in neurons and glial cells. Ann. NY Acad. Sci. 825, 1–10 (1997).
    CAS PubMed Google Scholar
  78. Sawynok, J. & Liu, X. J. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog. Neurobiol. 69, 313–340 (2003).
    CAS PubMed Google Scholar
  79. Si, Q., Nakamura, Y., Ogata, T., Kataoka, K. & Schubert, P. Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res. 812, 97–104 (1998).
    CAS PubMed Google Scholar
  80. Matthews, S. J. & McCoy, C. Thalidomide: a review of approved and investigational uses. Clin. Ther. 25, 342–395 (2003).
    CAS PubMed Google Scholar
  81. Mujagic, H., Chabner, B. A. & Mujagic, Z. Mechanisms of action and potential therapeutic uses of thalidomide. Croat. Med. J. 43, 274–285 (2002).
    PubMed Google Scholar
  82. Majumdar, S., Lamothe, B. & Aggarwal, B. B. Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol. 168, 2644–2651 (2002).
    CAS PubMed Google Scholar
  83. Gallily, R., Kipper-Galperin, M. & Brenner, T. _Mycoplasma fermentans_-induced inflammatory response of astrocytes: selective modulation by aminoguanidine, thalidomide, pentoxifylline and IL-10. Inflammation 23, 495–505 (1999).
    CAS PubMed Google Scholar
  84. Peterson, P. K. et al. Thalidomide inhibits tumor necrosis factor-α production by lipopolysaccharide- and lipoarabinomannan-stimulated human microglial cells. J. Infect. Dis. 172, 1137–1140 (1995).
    CAS PubMed Google Scholar
  85. Moreira, A. L. et al. Thalidomide exerts its inhibitory action on tumor necrosis factor-α by enhancing mRNA degradation. J. Exp. Med. 177, 1675–1680 (1993).
    CAS PubMed Google Scholar
  86. Corral, L. G. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J. Immunol. 163, 380–386 (1999).
    CAS PubMed Google Scholar
  87. Li, J., Luo, S., Hong, W., Zhou, Z. & Zou, W. Influence of thalidomide on interleukin-6 and its transmission in multiple myeloma patients. Zhonghua Zhong Liu Za Zhi 24, 254–256 (2002).
    CAS PubMed Google Scholar
  88. Bauditz, J., Wedel, S. & Lochs, H. Thalidomide reduces tumour necrosis factor-α and interleukin-12 production in patients with chronic active Crohn's disease. Gut 50, 196–200 (2002).
    CAS PubMed PubMed Central Google Scholar
  89. Jin, S. H., Kim, T. I., Han, D. S., Shin, S. K. & Kim, W. H. Thalidomide suppresses the interleukin 1β-induced NF-κB signaling pathway in colon cancer cells. Ann. NY Acad. Sci. 973, 414–418 (2002).
    CAS PubMed Google Scholar
  90. Thiele, A. et al. Cytokine modulation and suppression of liver injury by a novel analogue of thalidomide. Eur. J. Pharmacol. 453, 325–334 (2002).
    CAS PubMed Google Scholar
  91. Rajkumar, S. V., Fonseca, R. & Witzig, T. E. Complete resolution of reflex sympathetic dystrophy with thalidomide treatment. Arch. Intern. Med. 161, 2502–2503 (2001).
    CAS PubMed Google Scholar
  92. Prager, J., Fleischman, J. & Lingua, G. Open label clinical experience of thalidomide in the treatment of complex regional pain syndrome Type 1. J. Pain 4, S68 (2003).
    Google Scholar
  93. Sanders, S. & Harisdangkul, V. Leflunomide for the treatment of rheumatoid arthritis and autoimmunity. Am. J. Med. Sci. 323, 190–193 (2002).
    PubMed Google Scholar
  94. Furst, D. E. Innovative treatment approaches for rheumatoid arthritis. Cyclosporin, leflunomide and nitrogen mustard. Baillieres Clin. Rheumatol. 9, 711–729 (1995).
    CAS PubMed Google Scholar
  95. Kraan, M. C. et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 43, 1820–1830 (2000).
    CAS PubMed Google Scholar
  96. Elkayam, O. et al. Active leflunomide metabolite inhibits interleukin-1β, tumour necrosis factor-α, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann. Rheum. Dis. 62, 440–443 (2003).
    CAS PubMed PubMed Central Google Scholar
  97. Cutolo, M. et al. Anti-inflammatory effects of leflunomide on cultured synovial macrophages from patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 297–302 (2003).
    CAS PubMed PubMed Central Google Scholar
  98. Manna, S. K., Mukhopadhyay, A. & Aggarwal, B. B. Leflunomide suppresses TNF-induced cellular responses: effects on NF-κB, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J. Immunol. 165, 5962–5969 (2000).
    CAS PubMed Google Scholar
  99. Fox, R. I. et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol. 93, 198–208 (1999).
    CAS PubMed Google Scholar
  100. Herrmann, M. L., Schleyerbach, R. & Kirschbaum, B. J. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 47, 273–289 (2000).
    CAS PubMed Google Scholar
  101. Miljkovic, D. et al. Leflunomide inhibits activation of inducible nitric oxide synthase in rat astrocytes. Brain Res. 889, 331–338 (2001).
    CAS PubMed Google Scholar
  102. Bao, L. et al. Adjuvant-induced arthritis: IL-1β, IL-6 and TNF-α are up-regulated in the spinal cord. Neuroreport 12, 3905–3908 (2001).
    CAS PubMed Google Scholar
  103. Bruce-Gregorios, J. H., Soucy, D. M., Chen, M. G. & Norenberg, M. D. Effect of methotrexate on glial fibrillary acidic protein content of astrocytes in primary culture. J. Neuropathol. Exp. Neurol. 50, 118–125 (1991).
    CAS PubMed Google Scholar
  104. el-Badawi, M. G., Fatani, J. A., Bahakim, H. & Abdalla, M. A. Light and electron microscopic observations on the cerebellum of guinea pigs following low-dose methotrexate. Exp. Mol. Pathol. 53, 211–222 (1990).
    CAS PubMed Google Scholar
  105. Longo-Sorbello, G. S. & Bertino, J. R. Current understanding of metrotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica 86, 121–127 (2001).
    CAS PubMed Google Scholar
  106. Chan, E. S. & Cronstein, B. N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res. 4, 266–273 (2002).
    PubMed PubMed Central Google Scholar
  107. Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory effects of methotrexate are mediated by adenosine. Adv. Exp. Med. Biol. 370, 411–416 (1994).
    CAS PubMed Google Scholar
  108. Montesinos, M. C. et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum. 43, 656–663 (2000).
    CAS PubMed Google Scholar
  109. Neurath, M. F. et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin. Exp. Immunol. 115, 42–55 (1999).
    CAS PubMed PubMed Central Google Scholar
  110. Hayem, G., Domarle, O., Thuong-Guyot, M., Pocidalo, J. J. & Meyer, O. Effects of methotrexate on the oxidative metabolism of cultured rabbit articular chondrocytes. J. Rheumatol. 27, 1117–1120 (2000).
    CAS PubMed Google Scholar
  111. Rudwaleit, M. et al. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor-α, increase of interleukin-10, and predicted by the initial concentration of interleukin-4. Ann. Rheum. Dis. 59, 311–314 (2000).
    CAS PubMed PubMed Central Google Scholar
  112. Brody, M., Bohm, I. & Bauer, R. Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin-1β to the interleukin-1 receptor on target cells. Eur. J. Clin. Chem. Clin. Biochem. 31, 667–674 (1993).
    CAS PubMed Google Scholar
  113. Segal, R., Mozes, E., Yaron, M. & Tartakovsky, B. The effects of methotrexate on the production and activity of interleukin-1. Arthritis Rheum. 32, 370–377 (1989).
    CAS PubMed Google Scholar
  114. Segal, R., Yaron, M. & Tartakovsky, B. Rescue of interleukin-1 activity by leucovorin following inhibition by methotrexate in a murine in vitro system. Arthritis Rheum. 33, 1745–1748 (1990).
    CAS PubMed Google Scholar
  115. Gregorios, J. B. et al. Morphologic alterations in rat brain following systemic and intraventricular methotrexate injection: light and electron microscopic studies. J. Neuropathol. Exp. Neurol. 48, 33–47 (1989).
    CAS PubMed Google Scholar
  116. Hommes, D. et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology 122, 7–14 (2002).
    CAS PubMed Google Scholar
  117. Lali, F. V., Hunt, A. E., Turner, S. J. & Foxwell, B. M. The pyridinyl imidazole inhibitor SF203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J. Biol. Chem. 275, 7395–7402 (2000).
    CAS PubMed Google Scholar
  118. Dunn, S. L., Young, E. A., Hall, M. D. & McNulty, S. Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat primary striatal cultures. Glia 37, 31–42 (2002).
    PubMed Google Scholar
  119. Jeohn, G. H. et al. Go6976 inhibits LPS-induced microglial TNF-α release by suppressing p38 MAP kinase activation. Neuroscience 114, 689–697 (2002).
    CAS PubMed Google Scholar
  120. Jin, S. X., Zhaung, Z. Y., Woolf, C. J. & Ji, R. R. p38 MAPK is activated after a spinal nerve ligation first in spinal cord microglia and then in DRG neurons and contributes to the generation of neuropathic pain. J. Neurosci. 23, 4017–4022 (2003).
    CAS PubMed PubMed Central Google Scholar
  121. Kim, S. Y. et al. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport 13, 2483–2486 (2002).
    CAS PubMed Google Scholar
  122. Hamilton, T. A., Ohmori, Y., Tebo, J. M. & Kishore, R. Regulation of macropahge gene expression by pro- and anti-inflammatory cytokines. Pathobiology 67, 241–244 (1999).
    CAS PubMed Google Scholar
  123. Kontoyiannis, D. et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J. 20, 3760–3770 (2001).
    CAS PubMed PubMed Central Google Scholar
  124. Donnelly, R. P., Dickensheets, H. & Finbloom, D. S. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J. Interferon Cytokine Res. 19, 563–573 (1999).
    CAS PubMed Google Scholar
  125. Sawada, M., Suzumura, A., Hosoya, H., Marunouchi, T. & Nagatsu, T. Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J. Neurochem. 72, 1466–1471 (1999).
    CAS PubMed Google Scholar
  126. Foey, A. D. et al. Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-α: role of the p38 and p42/44 mitogen-activated protein kinases. J. Immunol. 160, 920–928 (1998).
    CAS PubMed Google Scholar
  127. Huber, T. S. et al. Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury. Shock 13, 425–434 (2000).
    CAS PubMed Google Scholar
  128. Bachis, A. et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J. Neurosci. 21, 3104–3112 (2001).
    CAS PubMed PubMed Central Google Scholar
  129. Milligan, E. D. et al. Inflammatory and chronic constriction injury-induced pain states are controlled by spinal delivery of viral and non-viral vectors encoding the anti-inflammatory gene, interleukin-10 (IL10). Proc. Soc. Neurosci. 29 (in the press).
  130. Kastin, A. J., Akerstrom, V. & Pan, W. Interleukin-10 as a CNS therapeutic: the obstacle of the blood–brain/blood–spinal cord barrier. Brain Res. Mol. Brain Res. 114, 168–171 (2003).
    CAS PubMed Google Scholar
  131. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci. 4, 353–364 (2003). This review article focuses on the promise of gene therapy for the resolution of a variety of clinical targets.
    CAS Google Scholar
  132. Xu, Z. L., Mizuguchi, H., Mayumi, T. & Hayakawa, T. Regulated gene expression from adenovirus vectors: a systematic comparison of various inducible systems. Gene 309, 145–151 (2003).
    CAS PubMed Google Scholar
  133. Wiesler-Frank, J., Milligan, E. D., Maier, S. F. & Watkins, L. R. in Encyclopedic Reference of Pam (eds Schmidt, R. & Willis, W. D.) (Springer, Berlin, in the press).
  134. Volterra, A. & Bezzi, P. in The Tripartite Synapse (eds Volterra, A., Magistretti, P. J. & Hayden, P. G.) 164–182 (Oxford Univ. Press, Oxford, 2002).
    Google Scholar

Download references