GLIA: A novel drug discovery target for clinical pain (original) (raw)
References
McQuay, H., Carroll, D., Jadad, A. R., Wiffen, P. & Moore, A. Anticonvulsant drugs for management of pain: a systematic review. Brit. Med. J.311, 1047–1052 (1995). CASPubMedPubMed Central Google Scholar
McQuay, H. J. et al. A systematic review of antidepressants in neuropathic pain. Pain68, 217–227 (1996). CASPubMed Google Scholar
Watkins, L. R. & Maier, S. F. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev.82, 981–1011 (2002). This article reviews the immunology of peripheral nerves, dorsal root ganglia and spinal nerves; the evidence from animal models of immune involvement in pathological pain; and the evidence that diverse human clinical pain syndromes involve an immune component. CASPubMed Google Scholar
Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science288, 1765–1769 (2000). An excellent review of neuronal changes implicated in creation and maintenance of exaggerated pain states. CASPubMed Google Scholar
Pekny, M. in Progress in Brain Research: Glial Cell Funtion (eds Castellano-Lopez, B. & Nieto-Sampedro, M.) 23–30 (Elsevier, Amsterdam, 2001). Google Scholar
Benveniste, E. N. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 700–716 (Oxford, New York, 1995). Google Scholar
Perry, V. H. Macrophages and the Nervous System (Landes, Austin, 1994). Google Scholar
Gehrmann, J. & Kreutzberg, G. W. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 883–904 (Oxford, New York, 1995). Google Scholar
Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci.22, 208–215 (1999). Synapses can no longer be considered as simply a presynaptic neuron and a postsynaptic neuron. Rather, three entities are involved, the third being astrocytes. A review of the evidence that astrocytes 'listen' to neuronal communication and 'talk back' to the neurons is provided. CASPubMed Google Scholar
Garrison, C. J., Dougherty, P. M., Kajander, K. C. & Carlton, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res.565, 1–7 (1991). This research article is historically important as it provides the first evidence that nerve damage, which creates neuropathic pain, also activates spinal cord glial CASPubMed Google Scholar
Garrison, C. J., Dougherty, P. M. & Carlton, S. M. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp. Neurol.129, 237–243 (1994). Historically important, this article provides the first evidence that drugs that inhibit neuropathic pain also inhibit glial activation. It provided the first evidence that, at minimum, neuropathic pain and glial activation are strongly correlated. CASPubMed Google Scholar
Watkins, L. R., Milligan, E. D. & Maier, S. F. Glial activation: a driving force for pathological pain. Trends Neurosci.24, 450–455 (2001). Evidence is reviewed that spinal cord glia are key mediators in the creation and maintenance of exaggerated pain states. CASPubMed Google Scholar
Berg-Johnsen, J., Paulsen, R. E., Fonnum, F. & Langmoen, I. A. Changes in evoked potentials and amino acid content during fluorocitrate action studied in rat hippocampal cortex. Exp. Brain Res.96, 241–246 (1993). CASPubMed Google Scholar
Hassel, B., Paulsen, R. E., Johnson, A. & Fonnum, F. Selective inhibition of glial cell metabolism by fluorocitrate. Brain Res.249, 120–124 (1992). Google Scholar
Tikka, T. M. & Koistinaho, J. E. Minocycline provides neuroprotection against _N_-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol.166, 7527–7533 (2001). CASPubMed Google Scholar
Meller, S. T., Dykstra, C., Grzbycki, D., Murphy, S. & Gebhart, G. F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology33, 1471–1478 (1994). Provides the first evidence that disrupting glial activation blocks exaggerated pain responses. In addition, it is the first evidence that activation of glia, in their role as immune cells, is sufficient to induce exaggerated pain responses. CASPubMed Google Scholar
Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J. & Maier, S. F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain71, 225–235 (1997). CASPubMed Google Scholar
Milligan, E. D. et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res.861, 105–116 (2000). CASPubMed Google Scholar
Milligan, E. D. et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain. J. Neurosci.23, 1026–1040 (2003). CASPubMedPubMed Central Google Scholar
Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther.306, 624–630 (2003). Anatomical and pharmacological evidence supports the intriguing hypothesis that microglia are key in the initiation of exaggerated pain states, but that astrocytes (and not microglia) are crucial for the maintenance of enhanced pain. CASPubMed Google Scholar
Ledeboer, A. et al. Selective inhibition of spinal cord microglial activation attenuates mechanical allodynia in rat models of pathological pain. Proc. Soc. Neurosci. (in the press).
Cholewinski, A. J., Hanley, M. R. & Wilkin, G. P. A phosphoinositide-linked peptide response in astrocytes: evidence for regional heterogeneity. Neurochem. Res.13, 389–394 (1988). CASPubMed Google Scholar
Beaujouan, J. C. et al. Marked regional heterogeneity of 125I-Bolton Hunter substance P binding and substance P-induced activation of phospholipase C in astrocyte cultures from the embryonic or newborn rat. J. Neurochem.54, 669–675 (1990). CASPubMed Google Scholar
Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci.23, 2899–2910 (2003). CASPubMedPubMed Central Google Scholar
Ochalski, P. A., Frankenstein, U. N., Hertzberg, E. L. & Nagy, J. I. Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neurosci.76, 931–945 (1997). CAS Google Scholar
Li, W. E. & Nagy, I. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal–glial interactions. Neurosci.97, 113–123 (2000). CAS Google Scholar
Palma, C. et al. Functional characterization of substance P receptors on cultured human spinal cord astrocytes: synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production. Glia21, 183–193 (1997). CASPubMed Google Scholar
Tikka, T., Fiebich, B. L., Goldsteins, G., Keinanen, R. & Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci.21, 2580–2588 (2001). CASPubMedPubMed Central Google Scholar
Bartlett, P. F. Pluripotential hemopoietic stem cells in adult mouse brain. Proc. Natl Acad. Sci. USA79, 2722–2725 (1982). CASPubMedPubMed Central Google Scholar
Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. Mature microglia resemble immature antigen-presenting cells. Glia22, 72–85 (1998). CASPubMed Google Scholar
Fedoroff, S. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 162–184 (Oxford, New York, 1995). Google Scholar
Lee, J. C., Mayer-Proschel, M. & Rao, M. S. Gliogenesis in the central nervous system. Glia30, 105–121 (2000). CASPubMed Google Scholar
Watkins, L. R., Hansen, M. K., Nguyen, K. T., Lee, J. E. & Maier, S. F. Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for non-molecular biologists. Life Sci.65, 449–481 (1999). CASPubMed Google Scholar
Milligan, E. D. et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J. Neurosci.21, 2808–2819 (2001). The first demonstration that activation of spinal cord glia, in their role as immune cells; (i) is sufficient to induce thermal hyperalgesia and mechanical allodynia, (ii) induces the production and release of pro-inflammatory cytokines, and (iii) this pro-inflammatory cytokine release is causal to the resultant pain enhancement. CASPubMedPubMed Central Google Scholar
Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA95, 10896–10901 (1998). CASPubMedPubMed Central Google Scholar
Watkins, L. R., Milligan, E. D. & Maier, S. F. in Advances in Pain Research and Therapy (eds Dostrovsky, J. O., Carr, D. B. & Koltzenberg, M.) 369–385 (IASP, Seattle, 2003). Google Scholar
Verge, G. et al. Mapping fractalkine and its receptor (CX3CR1) in a rat model of sciatic inflammatory neuropathy (SIN). Proc. Soc. Neurosci.28, 455.3 (2002). Google Scholar
Chapman, G. A. et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci.20, RC87 (1–5) (2000). CASPubMedPubMed Central Google Scholar
Dinarello, C. A. in Cytokines and Pain (eds Watkins, L. R. & Maier, S. F.) 1–19 (Birkhauser, Basel, 1999). An excellent review of pro-inflammatory cytokine molecular biology and cellular signalling, with a focus on their role in pain facilitation. Google Scholar
Maier, S. F. & Watkins, L. R. Cytokines for psychologists: implications of bi-directional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol. Rev.105, 83–107 (1998). This review article examines the role of pro-inflammatory cytokines in a wide array of peripheral, brain and spinal cord processes. It is aimed at non-specialists to introduce them to this research area CASPubMed Google Scholar
DeLeo, J. A., Colburn, R. W., Nochols, M. & Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res.16, 695–700 (1996). CASPubMed Google Scholar
Falchi, M., Ferrara, G., Gharib, C. & Dib, B. Hyperalgesic effect of intrathecally administered interleukin-1 in rats. Drugs Exp. Clin. Res.27, 97–101 (2001). CASPubMed Google Scholar
Reeve, A. J., Patel, S., Fox, A., Walker, K. & Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain4, 247–257 (2000). CASPubMed Google Scholar
Tadano, T. et al. Induction of nociceptive responses by intrathecal injection of interleukin-1 in mice. Life Sci.65, 255–261 (1999). CASPubMed Google Scholar
Oka, T. & Hori, T. in Cytokines and Pain (eds Watkins, L. R. & Maier, S. F.) 183–204 (Birkhauser, Basel, 1999). Google Scholar
Sweitzer, S. M., Martin, D. & DeLeo, J. A. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neurosci.103, 529–539 (2001). CAS Google Scholar
Clark, A. R., Dean, J. L. E. & Saklatvala, J. Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett.546, 37–44 (2003). CASPubMed Google Scholar
Svensson, C. I. et al. Activation of p38 MAP kinase in spinal microglia is a critical link in inflammation induced spinal pain processing. J. Neurochem.86, 1534–1544 (2003). CASPubMed Google Scholar
Svensson, C. I., Hua, X. Y., Protter, A. A., Powell, H. C. & Yaksh, T. L. Spinal p38 MAP kinase is necessary for NMDA induced spinal PGE2 release and thermal hyperalgesia. Neuroreport14, 1153–1157 (2003). CASPubMed Google Scholar
Schafers, M., Svensson, C. I., Sommer, C. & Sorkin, L. S. Tumor necrosis factor induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci.23, 2517–2521 (2003). CASPubMedPubMed Central Google Scholar
Jones, T. L. et al. Involvement of p38α MAPK in capsaicin-induced hyperalgesia. Proc. Soc. Neurosci.28, 56.5 (2002). Google Scholar
Milligan, E. D. et al. Systemic administration of CNI-1493, a p38 MAP kinase inhibitor, blocks HIV-1 gp120-induced enhanced pain states in rats. J. Pain2, 326–333 (2001). CASPubMed Google Scholar
Sweitzer, S. M., Schubert, P. & DeLeo, J. A. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J. Pharmacol. Exp. Ther.297, 1210–1217 (2001). CASPubMed Google Scholar
Winkelstein, B. A., Rutkowski, M. D., Sweitzer, S. M., Pahl, J. L. & DeLeo, J. A. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J. Comp. Neurol.2, 127–139 (2001). Google Scholar
Hashizume, H., Rutkowski, M. D., Weinstein, J. N. & DeLeo, J. A. Central administration of methotrexate reduces mechanical allodynia in an animal model of radiculopathy/sciatica. Pain87, 159–169 (2000). CASPubMed Google Scholar
Sommer, C., Marziniak, M. & Myers, R. R. The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve. Pain74, 83–91 (1998). CASPubMed Google Scholar
George, A., Marziniak, M., Schafers, M., Toyka, K. V. & Sommer, C. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-α, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain88, 267–275 (2000). CASPubMed Google Scholar
Eriksson, T., Bjorkman, S. & Hoglund, P. Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol.5, 365–376 (2001). Google Scholar
Clemmensen, O. J., Olsen, P. Z. & Andersen, K. E. Thalidomide neurotoxicity. Arch. Dermatol.120, 338–341 (1984). CASPubMed Google Scholar
Strle, K. et al. Interleukin-10 in the brain. Crit. Rev. Immunol.21, 427–449 (2001). CASPubMed Google Scholar
Moore, K. W., deWaal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001). CASPubMed Google Scholar
Ledeboer, A. et al. Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J. Neuroimmunol.136, 94–103 (2003). CASPubMed Google Scholar
Yu, C. -G., Fairbanks, C. A., Wilcox, G. L. & Yezierski, R. P. Effects of agmatine, interleukin-10 and cyclosporin on spontaneous pain behavior following excitotoxic spinal cord injury in rats. J. Pain4, 129–140 (2003). CASPubMed Google Scholar
Laughlin, T. M., Bethea, J. R., Yezierski, R. P. & Wilcox, G. L. Cytokine involvement in dynorphin-induced allodynia. Pain84, 159–167 (2000). CASPubMed Google Scholar
Plunkett, J. A., Yu, C. -G., Easton, J. M., Bethea, J. R. & Yezierski, R. P. Effects of interelukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exper. Neurol.168, 144–154 (2001). CAS Google Scholar
Hornfeldt, C. S. & Larson, A. A. Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord. Eur. J. Pharmacol.179, 307–313 (1990). CASPubMed Google Scholar
Yrjanheikki, J., Keinanen, R., Pellikka, M., Hokfelt, T. & Korstinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Neurobiology95, 15769–15774 (1998). CAS Google Scholar
Lin, S. et al. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition of p38 MAP kinase in rat cerebellar granule neurons. Neurosci. Lett.315, 61–64 (2001). CASPubMed Google Scholar
Kary, S. & Burmester, G. R. Anakinra: the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int. J. Clin. Pract.57 (2003).
Calabrese, L. H. Molecular differences in anticytokine therapies. Clin. Exp. Rheumatol.21, 241–248 (2003). CASPubMed Google Scholar
Mielke, R. et al. Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: overview of phase I and phase II clinical trials. Alzheimer Dis. Assoc. Disord.12, S29–35 (1998). CASPubMed Google Scholar
Rother, M. et al. Propentofylline in the treatment of Alzheimer's disease and vascular dementia: a review of phase III trials. Dement. Geriatr. Cogn. Disord.9, 36–43 (1998). CASPubMed Google Scholar
Plaschke, K. et al. Neuromodulatory effect of propentofylline on rat brain under acute and long-term hypoperfusion. Br. J. Pharmacol.133, 107–116 (2001). CASPubMedPubMed Central Google Scholar
Wu, Y. P., McRae, A., Rudolphi, K. & Ling, E. A. Propentofylline attenuates microglial reaction in the rat spinal cord induced by middle cerebral artery occlusion. Neurosci. Lett.260, 17–20 (1999). CASPubMed Google Scholar
Numagami, Y., Marro, P. J., Mishra, O. P. & Delivoria-Papadopoulos, M. Effect of propentofylline on free radical generation during cerebral hypoxia in the newborn piglet. Neuroscience84, 1127–1133 (1998). CASPubMed Google Scholar
Schubert, P. et al. Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann. NY Acad. Sci.903, 24–33 (2000). CASPubMed Google Scholar
Schubert, P., Ogata, T., Marchini, C., Ferroni, S. & Rudolphi, K. Protective mechanisms of adenosine in neurons and glial cells. Ann. NY Acad. Sci.825, 1–10 (1997). CASPubMed Google Scholar
Sawynok, J. & Liu, X. J. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog. Neurobiol.69, 313–340 (2003). CASPubMed Google Scholar
Si, Q., Nakamura, Y., Ogata, T., Kataoka, K. & Schubert, P. Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res.812, 97–104 (1998). CASPubMed Google Scholar
Matthews, S. J. & McCoy, C. Thalidomide: a review of approved and investigational uses. Clin. Ther.25, 342–395 (2003). CASPubMed Google Scholar
Mujagic, H., Chabner, B. A. & Mujagic, Z. Mechanisms of action and potential therapeutic uses of thalidomide. Croat. Med. J.43, 274–285 (2002). PubMed Google Scholar
Majumdar, S., Lamothe, B. & Aggarwal, B. B. Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol.168, 2644–2651 (2002). CASPubMed Google Scholar
Gallily, R., Kipper-Galperin, M. & Brenner, T. _Mycoplasma fermentans_-induced inflammatory response of astrocytes: selective modulation by aminoguanidine, thalidomide, pentoxifylline and IL-10. Inflammation23, 495–505 (1999). CASPubMed Google Scholar
Peterson, P. K. et al. Thalidomide inhibits tumor necrosis factor-α production by lipopolysaccharide- and lipoarabinomannan-stimulated human microglial cells. J. Infect. Dis.172, 1137–1140 (1995). CASPubMed Google Scholar
Moreira, A. L. et al. Thalidomide exerts its inhibitory action on tumor necrosis factor-α by enhancing mRNA degradation. J. Exp. Med.177, 1675–1680 (1993). CASPubMed Google Scholar
Corral, L. G. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J. Immunol.163, 380–386 (1999). CASPubMed Google Scholar
Li, J., Luo, S., Hong, W., Zhou, Z. & Zou, W. Influence of thalidomide on interleukin-6 and its transmission in multiple myeloma patients. Zhonghua Zhong Liu Za Zhi24, 254–256 (2002). CASPubMed Google Scholar
Bauditz, J., Wedel, S. & Lochs, H. Thalidomide reduces tumour necrosis factor-α and interleukin-12 production in patients with chronic active Crohn's disease. Gut50, 196–200 (2002). CASPubMedPubMed Central Google Scholar
Jin, S. H., Kim, T. I., Han, D. S., Shin, S. K. & Kim, W. H. Thalidomide suppresses the interleukin 1β-induced NF-κB signaling pathway in colon cancer cells. Ann. NY Acad. Sci.973, 414–418 (2002). CASPubMed Google Scholar
Thiele, A. et al. Cytokine modulation and suppression of liver injury by a novel analogue of thalidomide. Eur. J. Pharmacol.453, 325–334 (2002). CASPubMed Google Scholar
Rajkumar, S. V., Fonseca, R. & Witzig, T. E. Complete resolution of reflex sympathetic dystrophy with thalidomide treatment. Arch. Intern. Med.161, 2502–2503 (2001). CASPubMed Google Scholar
Prager, J., Fleischman, J. & Lingua, G. Open label clinical experience of thalidomide in the treatment of complex regional pain syndrome Type 1. J. Pain4, S68 (2003). Google Scholar
Sanders, S. & Harisdangkul, V. Leflunomide for the treatment of rheumatoid arthritis and autoimmunity. Am. J. Med. Sci.323, 190–193 (2002). PubMed Google Scholar
Furst, D. E. Innovative treatment approaches for rheumatoid arthritis. Cyclosporin, leflunomide and nitrogen mustard. Baillieres Clin. Rheumatol.9, 711–729 (1995). CASPubMed Google Scholar
Kraan, M. C. et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum.43, 1820–1830 (2000). CASPubMed Google Scholar
Elkayam, O. et al. Active leflunomide metabolite inhibits interleukin-1β, tumour necrosis factor-α, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann. Rheum. Dis.62, 440–443 (2003). CASPubMedPubMed Central Google Scholar
Cutolo, M. et al. Anti-inflammatory effects of leflunomide on cultured synovial macrophages from patients with rheumatoid arthritis. Ann. Rheum. Dis.62, 297–302 (2003). CASPubMedPubMed Central Google Scholar
Manna, S. K., Mukhopadhyay, A. & Aggarwal, B. B. Leflunomide suppresses TNF-induced cellular responses: effects on NF-κB, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J. Immunol.165, 5962–5969 (2000). CASPubMed Google Scholar
Fox, R. I. et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol.93, 198–208 (1999). CASPubMed Google Scholar
Herrmann, M. L., Schleyerbach, R. & Kirschbaum, B. J. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology47, 273–289 (2000). CASPubMed Google Scholar
Miljkovic, D. et al. Leflunomide inhibits activation of inducible nitric oxide synthase in rat astrocytes. Brain Res.889, 331–338 (2001). CASPubMed Google Scholar
Bao, L. et al. Adjuvant-induced arthritis: IL-1β, IL-6 and TNF-α are up-regulated in the spinal cord. Neuroreport12, 3905–3908 (2001). CASPubMed Google Scholar
Bruce-Gregorios, J. H., Soucy, D. M., Chen, M. G. & Norenberg, M. D. Effect of methotrexate on glial fibrillary acidic protein content of astrocytes in primary culture. J. Neuropathol. Exp. Neurol.50, 118–125 (1991). CASPubMed Google Scholar
el-Badawi, M. G., Fatani, J. A., Bahakim, H. & Abdalla, M. A. Light and electron microscopic observations on the cerebellum of guinea pigs following low-dose methotrexate. Exp. Mol. Pathol.53, 211–222 (1990). CASPubMed Google Scholar
Longo-Sorbello, G. S. & Bertino, J. R. Current understanding of metrotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica86, 121–127 (2001). CASPubMed Google Scholar
Chan, E. S. & Cronstein, B. N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res.4, 266–273 (2002). PubMedPubMed Central Google Scholar
Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory effects of methotrexate are mediated by adenosine. Adv. Exp. Med. Biol.370, 411–416 (1994). CASPubMed Google Scholar
Montesinos, M. C. et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum.43, 656–663 (2000). CASPubMed Google Scholar
Neurath, M. F. et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin. Exp. Immunol.115, 42–55 (1999). CASPubMedPubMed Central Google Scholar
Hayem, G., Domarle, O., Thuong-Guyot, M., Pocidalo, J. J. & Meyer, O. Effects of methotrexate on the oxidative metabolism of cultured rabbit articular chondrocytes. J. Rheumatol.27, 1117–1120 (2000). CASPubMed Google Scholar
Rudwaleit, M. et al. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor-α, increase of interleukin-10, and predicted by the initial concentration of interleukin-4. Ann. Rheum. Dis.59, 311–314 (2000). CASPubMedPubMed Central Google Scholar
Brody, M., Bohm, I. & Bauer, R. Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin-1β to the interleukin-1 receptor on target cells. Eur. J. Clin. Chem. Clin. Biochem.31, 667–674 (1993). CASPubMed Google Scholar
Segal, R., Mozes, E., Yaron, M. & Tartakovsky, B. The effects of methotrexate on the production and activity of interleukin-1. Arthritis Rheum.32, 370–377 (1989). CASPubMed Google Scholar
Segal, R., Yaron, M. & Tartakovsky, B. Rescue of interleukin-1 activity by leucovorin following inhibition by methotrexate in a murine in vitro system. Arthritis Rheum.33, 1745–1748 (1990). CASPubMed Google Scholar
Gregorios, J. B. et al. Morphologic alterations in rat brain following systemic and intraventricular methotrexate injection: light and electron microscopic studies. J. Neuropathol. Exp. Neurol.48, 33–47 (1989). CASPubMed Google Scholar
Hommes, D. et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology122, 7–14 (2002). CASPubMed Google Scholar
Lali, F. V., Hunt, A. E., Turner, S. J. & Foxwell, B. M. The pyridinyl imidazole inhibitor SF203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J. Biol. Chem.275, 7395–7402 (2000). CASPubMed Google Scholar
Dunn, S. L., Young, E. A., Hall, M. D. & McNulty, S. Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat primary striatal cultures. Glia37, 31–42 (2002). PubMed Google Scholar
Jeohn, G. H. et al. Go6976 inhibits LPS-induced microglial TNF-α release by suppressing p38 MAP kinase activation. Neuroscience114, 689–697 (2002). CASPubMed Google Scholar
Jin, S. X., Zhaung, Z. Y., Woolf, C. J. & Ji, R. R. p38 MAPK is activated after a spinal nerve ligation first in spinal cord microglia and then in DRG neurons and contributes to the generation of neuropathic pain. J. Neurosci.23, 4017–4022 (2003). CASPubMedPubMed Central Google Scholar
Kim, S. Y. et al. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport13, 2483–2486 (2002). CASPubMed Google Scholar
Hamilton, T. A., Ohmori, Y., Tebo, J. M. & Kishore, R. Regulation of macropahge gene expression by pro- and anti-inflammatory cytokines. Pathobiology67, 241–244 (1999). CASPubMed Google Scholar
Kontoyiannis, D. et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J.20, 3760–3770 (2001). CASPubMedPubMed Central Google Scholar
Donnelly, R. P., Dickensheets, H. & Finbloom, D. S. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J. Interferon Cytokine Res.19, 563–573 (1999). CASPubMed Google Scholar
Sawada, M., Suzumura, A., Hosoya, H., Marunouchi, T. & Nagatsu, T. Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J. Neurochem.72, 1466–1471 (1999). CASPubMed Google Scholar
Foey, A. D. et al. Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-α: role of the p38 and p42/44 mitogen-activated protein kinases. J. Immunol.160, 920–928 (1998). CASPubMed Google Scholar
Huber, T. S. et al. Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury. Shock13, 425–434 (2000). CASPubMed Google Scholar
Bachis, A. et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J. Neurosci.21, 3104–3112 (2001). CASPubMedPubMed Central Google Scholar
Milligan, E. D. et al. Inflammatory and chronic constriction injury-induced pain states are controlled by spinal delivery of viral and non-viral vectors encoding the anti-inflammatory gene, interleukin-10 (IL10). Proc. Soc. Neurosci.29 (in the press).
Kastin, A. J., Akerstrom, V. & Pan, W. Interleukin-10 as a CNS therapeutic: the obstacle of the blood–brain/blood–spinal cord barrier. Brain Res. Mol. Brain Res.114, 168–171 (2003). CASPubMed Google Scholar
Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci.4, 353–364 (2003). This review article focuses on the promise of gene therapy for the resolution of a variety of clinical targets. CAS Google Scholar
Xu, Z. L., Mizuguchi, H., Mayumi, T. & Hayakawa, T. Regulated gene expression from adenovirus vectors: a systematic comparison of various inducible systems. Gene309, 145–151 (2003). CASPubMed Google Scholar
Wiesler-Frank, J., Milligan, E. D., Maier, S. F. & Watkins, L. R. in Encyclopedic Reference of Pam (eds Schmidt, R. & Willis, W. D.) (Springer, Berlin, in the press).
Volterra, A. & Bezzi, P. in The Tripartite Synapse (eds Volterra, A., Magistretti, P. J. & Hayden, P. G.) 164–182 (Oxford Univ. Press, Oxford, 2002). Google Scholar