How molecular profiling could revolutionize drug discovery (original) (raw)
Stoughton, R. Applications of DNA microarrays in biology. Annu. Rev. Biochem. 13 Jan 2005 (10.1146/annurev.biochem.74.082803.133212).
de Hoog, C. L. & Mann, M. Proteomics. Annu. Rev. Genomics Hum. Genet.5, 267–293 (2004). ArticleCAS Google Scholar
Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G. & Nicholson, J. K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers9, 1–31 (2004). ArticleCAS Google Scholar
Nicholson, J. K. & Wilson, I. D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov.2, 668–676 (2003). ArticleCAS Google Scholar
Lindsay, M. A. Target discovery. Nature Rev. Drug Discov.2, 831–838 (2003). ArticleCAS Google Scholar
Weinshilboum, R. & Wang, L. Pharmacogenomics: bench to bedside. Nature Rev. Drug Discov.3, 739–748 (2004). ArticleCAS Google Scholar
Roth, A., Gill, R. & Certa, U. Temporal and spatial gene expression patterns after experimental stroke in a rat model and characterization of PC4, a potential regulator of transcription. Mol. Cell. Neurosci.22, 353–364 (2003). ArticleCAS Google Scholar
Chuaqui, R. F. et al. Post-analysis follow-up and validation of microarray experiments. Nature Genet.32 (Suppl.), 509–514 (2002). ArticleCAS Google Scholar
Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med.8, 500–508 (2002). ArticleCAS Google Scholar
Clare, A. & King, R. D. How well do we understand the clusters found in microarray data? In Silico Biol2, 511–522 (2002). CASPubMed Google Scholar
Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell102, 109–126 (2000). ArticleCAS Google Scholar
Hardwick, J. et al. Identification of biomarkers for tumor endothelial cell proliferation through gene expression profiling. Mol. Canc. Ther. (in the press).
Waring, J. F. et al. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol.175, 28–42 (2001). ArticleCAS Google Scholar
Waring, J. F. et al. Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology181–182, 537–550 (2002). Article Google Scholar
Zielinski, N. et al. Expression profiling using DNA microarray reveals a functional antagonism of the peroxisome proliferator activated receptor alpha by the protease inhibitor, Ritonavir. Conf. Antimicrobial Agents Chemother. Chicago, Illinois (2001).
Engelberg, A. Iconix Pharmaceuticals, Inc. - removing barriers to efficient drug discovery through chemogenomics. Pharmacogenomics5, 741–744 (2004). Article Google Scholar
Waring, J. F. et al. Development of a DNA microarray for toxicology based on hepatotoxin-regulated sequences. EHP Toxicogenomics111, 53–60 (2003). CASPubMed Google Scholar
Steiner, G. et al. Discriminating different classes of toxicants by transcript profiling. Environ. Health Perspect.112, 1236–1248 (2004). ArticleCAS Google Scholar
Gunther, E. C., Stone, D. J., Gerwien, R. W., Bento, P. & Heyes, M. P. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl Acad. Sci. USA100, 9608–9613 (2003). ArticleCAS Google Scholar
Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med.4, 1293–1301 (1998). ArticleCAS Google Scholar
Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science287, 873–880 (2000). ArticleCAS Google Scholar
van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415, 530–536 (2002). ArticleCAS Google Scholar
van 't Veer, L. J. et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res.5, 57–58 (2003). Article Google Scholar
Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359, 572–577 (2002). ArticleCAS Google Scholar
Mariadason, J. M. et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res.63, 8791–8812 (2003). CASPubMed Google Scholar
Ochi, K. et al. Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles. Int. J. Oncol.24, 647–655 (2004). CASPubMed Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). ArticleCAS Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCAS Google Scholar
Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science278, 1064–1068 (1997). ArticleCAS Google Scholar
Houshmand, P. & Zlotnik, A. Targeting tumor cells. Curr. Opin. Cell Biol.15, 640–644 (2003). ArticleCAS Google Scholar
Christopher, R. et al. Data-driven computer simulation of human cancer cell. Ann. NY Acad. Sci.1020, 132–153 (2004). ArticleCAS Google Scholar
Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature422, 297–302 (2003). ArticleCAS Google Scholar
Schadt, E. E., Monks, S. A. & Friend, S. H. A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans.31, 437–443 (2003). ArticleCAS Google Scholar
Franke, L. et al. TEAM: a tool for the integration of expression, and linkage and association maps. Eur. J. Hum. Genet.12, 633–638 (2004). ArticleCAS Google Scholar
Boess, F. et al. Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol. Sci.73, 386–402 (2003). ArticleCAS Google Scholar
Clish, C. B. et al. Integrative biological analysis of the APOE*3-leiden transgenic mouse. Omics8, 3–13 (2004). ArticleCAS Google Scholar
Neumann, E. & Thomas, J. Knowledge assembly for the life sciences. Drug Discov. Today7, S160–S162 (2002). Article Google Scholar
Ekins, S. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discov. Today9, 276–285 (2004). ArticleCAS Google Scholar
Wilson, A. G., White, A. C. & Mueller, R. A. Role of predictive metabolism and toxicity modeling in drug discovery — a summary of some recent advancements. Curr. Opin. Drug Discov. Devel.6, 123–128 (2003). CASPubMed Google Scholar
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov.3, 711–715 (2004). ArticleCAS Google Scholar
Deroubaix, X. & Coquette, A. The ins and outs of human ADME studies. Business Briefing: Pharmatech 2004 (2004).
van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347, 1999–2009 (2002). ArticleCAS Google Scholar
Hongyue, D. et al. A cell proliferation signature is a marker of extremely poor outcomes in a subpopulation of breast cancer patients. Cancer Res. (in the press).
Issa, A. M. Ethical perspectives on pharmacogenomic profiling in the drug development process. Nature Rev. Drug Discov.1, 300–308 (2002). ArticleCAS Google Scholar
Petricoin, E. F., 3rd et al. Medical applications of microarray technologies: a regulatory science perspective. Nature Genet.32 (Suppl.), 474–479 (2002). ArticleCAS Google Scholar
Christensen, C. M. The Innovator's Dilemma 252 (Harvard Business School Press, Boston, 1997). Google Scholar