A pathophysiological paradigm for the therapy of psychiatric disease (original) (raw)
Wong, M. L. & Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nature Rev. Drug Discov.3, 136–151 (2004). ArticleCAS Google Scholar
Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov.3, 353–359 (2004). ArticleCAS Google Scholar
Mayberg, H. S. Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci.9, 471–481 (1997). ArticleCASPubMed Google Scholar
Goldapple, K. et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry61, 34–41 (2004). ArticlePubMed Google Scholar
Keightley, M. L. et al. Personality influences limbic-cortical interactions during sad mood induction. Neuroimage20, 2031–2039 (2003). ArticlePubMed Google Scholar
Mayberg, H. S., Lewis, P. J., Regenold, W. & Wagner, H. N. Jr. Paralimbic hypoperfusion in unipolar depression. J. Nucl. Med.35, 929–934 (1994). CASPubMed Google Scholar
Seminowicz, D. A. et al. Limbic–frontal circuitry in major depression: a path modeling metanalysis. Neuroimage22, 409–418 (2004). ArticleCASPubMed Google Scholar
Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron45, 651–660 (2005). ArticleCASPubMed Google Scholar
Manji, H. K. et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry53, 707–742 (2003). ArticleCASPubMed Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003). ArticleCASPubMed Google Scholar
Shorter, E. & Tyrer, P. Separation of anxiety and depressive disorders: blind alley in psychopharmacology and classification of disease. BMJ327, 158–160 (2003). ArticlePubMedPubMed Central Google Scholar
Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science301, 386–389 (2003). ArticleCASPubMed Google Scholar
Ekselius, L. & Von Knorring, L. Changes in personality traits during treatment with sertraline or citalopram. Br. J. Psychiatry174, 444–448 (1999). ArticleCASPubMed Google Scholar
Healy, D., Langmaak, C. & Savage, M. Suicide in the course of the treatment of depression. J. Psychopharmacol.13, 94–99 (1999). ArticleCASPubMed Google Scholar
Michael, A. & O'Keane, V. Sexual dysfunction in depression. Hum. Psychopharmacol.15, 337–345 (2000). ArticlePubMed Google Scholar
Henderson, D. C. Atypical antipsychotic-induced diabetes mellitus: how strong is the evidence? CNS Drugs16, 77–89 (2002). ArticleCASPubMed Google Scholar
Meltzer, H. Y. Introduction: cardiovascular and metabolic risks associated with schizophrenia and antipsychotic drug treatment. J. Clin. Psychiatry63, 3–4 (2002). Google Scholar
Davidson, M. Risk of cardiovascular disease and sudden death in schizophrenia. J. Clin. Psychiatry63 (Suppl. 9), 5–11 (2002). PubMed Google Scholar
Vieweg, W. V. Mechanisms and risks of electrocardiographic QT interval prolongation when using antipsychotic drugs. J. Clin. Psychiatry63 (Suppl. 9), 18–24 (2002). CASPubMed Google Scholar
Zhang, X. et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron (in the press).
Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci.24, 10099–10102 (2004). ArticleCASPubMedPubMed Central Google Scholar
Francis, D. D., Szegda, K., Campbell, G., Martin, W. D. & Insel, T. R. Epigenetic sources of behavioral differences in mice. Nature Neurosci.6, 445–446 (2003). ArticleCASPubMed Google Scholar
Rutter, M. L. Psychosocial adversity and child psychopathology. Br. J. Psychiatry174, 480–493 (1999). ArticleCASPubMed Google Scholar
Kendler, K. S. et al. Childhood sexual abuse and adult psychiatric and substance use disorders in women: an epidemiological and cotwin control analysis. Arch. Gen. Psychiatry57, 953–959 (2000). ArticleCASPubMed Google Scholar
Andriamampandry, C. et al. Mss4 gene is up-regulated in rat brain after chronic treatment with antidepressant and down-regulated when rats are anhedonic. Mol. Pharmacol.62, 1332–1338 (2002). ArticleCASPubMed Google Scholar
Gunther, E. C., Stone, D. J., Gerwien, R. W., Bento, P. & Heyes, M. P. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl Acad. Sci. USA100, 9608–9613 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moller, H. J. Anxiety associated with comorbid depression. J. Clin. Psychiatry63 (Suppl. 14), 22–26 (2002). CASPubMed Google Scholar
Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature390, 604–607 (1997). ArticleCASPubMed Google Scholar
McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature390, 607–611 (1997). ArticleCASPubMed Google Scholar
Convit, A. et al. Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol. Aging18, 131–138 (1997). ArticleCASPubMed Google Scholar
Golomb, J. et al. Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance. Learn. Mem.1, 45–54 (1994). CASPubMed Google Scholar
Bremner, J. D. et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry152, 973–981 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gurvits, T. V. et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry40, 1091–1099 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. & Vannier, M. W. Hippocampal atrophy in recurrent major depression. Proc. Natl Acad. Sci. USA93, 3908–3913 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sheline, Y. I., Sanghavi, M., Mintun, M. A. & Gado, M. H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci.19, 5034–5043 (1999). ArticleCASPubMedPubMed Central Google Scholar
Duman, R. S. & Charney, D. S. Cell atrophy and loss in major depression. Biol. Psychiatry45, 1083–1084 (1999). ArticleCASPubMed Google Scholar
Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci.3, 453–462 (2002). ArticleCAS Google Scholar
Rocher, C., Spedding, M., Munoz, C. & Jay, T. M. Acute Stress-induced Changes in Hippocampal/Prefrontal Circuits in Rats: Effects of Antidepressants. Cereb. Cortex14, 224–229 (2004). ArticlePubMed Google Scholar
Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S. & Sapolsky, R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science239, 766–768 (1988). ArticleCASPubMed Google Scholar
Kofman, O. The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci. Biobehav. Rev.26, 457–470 (2002). ArticleCASPubMed Google Scholar
Vythilingam, M. et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am. J. Psychiatry159, 2072–2080 (2002). ArticlePubMedPubMed Central Google Scholar
Nakano, T. et al. Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. Am. J. Psychiatry159, 2087–2093 (2002). ArticlePubMed Google Scholar
Pham, K., McEwen, B. S., LeDoux, J. E. & Nader, K. Fear learning transiently impairs hippocampal cell proliferation. Neuroscience130, 17–24 (2005). ArticleCASPubMed Google Scholar
Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature361, 31–39 (1993). ArticleCASPubMed Google Scholar
Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci.23, 649–711 (2000). ArticleCASPubMed Google Scholar
Nagerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron44, 759–767 (2004). ArticlePubMed Google Scholar
Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron44, 749–757 (2004). ArticleCASPubMed Google Scholar
Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. Learning-induced LTP in neocortex. Science290, 533–536 (2000). ArticleCASPubMed Google Scholar
Knott, G. W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron34, 265–273 (2002). ArticleCASPubMed Google Scholar
Marrone, D. F. & Petit, T. L. The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power. Brain Res. Brain Res. Rev.38, 291–308 (2002). ArticlePubMed Google Scholar
Kempermann, G., Gast, D. & Gage, F. H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol.52, 135–143 (2002). ArticlePubMed Google Scholar
Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature422, 688–694 (2003). CASPubMed Google Scholar
Spedding, M., Neau, I. & Harsing, L. Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr. Opin. Pharmacol.3, 33–40 (2003). ArticleCASPubMed Google Scholar
Sodhi, M. S. & Sanders-Bush, E. Serotonin and brain development. Int. Rev. Neurobiol.59, 111–174 (2004). ArticleCASPubMed Google Scholar
West, A. R., Floresco, S. B., Charara, A., Rosenkranz, J. A. & Grace, A. A. Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann. NY Acad. Sci.1003, 53–74 (2003). ArticleCASPubMed Google Scholar
Gurden, H., Takita, M. & Jay, T. M. Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal–prefrontal cortex synapses in vivo. J. Neurosci.20, RC106 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex10, 272–284 (2000). ArticleCASPubMed Google Scholar
Duman, R. S., Heninger, G. R. & Nestler, E. J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry54, 597–606 (1997). ArticleCASPubMed Google Scholar
Tongiorgi, E., Righi, M. & Cattaneo, A. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci.17, 9492–9505 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kafitz, K. W., Rose, C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature401, 918–921 (1999). ArticleCASPubMed Google Scholar
Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science295, 1729–1734 (2002). ArticleCASPubMed Google Scholar
Suzuki, F., Junier, M. P., Guilhem, D., Sorensen, J. C. & Onteniente, B. Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience64, 665–674 (1995). ArticleCASPubMed Google Scholar
Cohen-Cory, S. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci.19, 9996–10003 (1999). ArticleCASPubMedPubMed Central Google Scholar
Young, D., Lawlor, P. A., Leone, P., Dragunow, M. & During, M. J. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Med.5, 448–453 (1999). ArticleCASPubMed Google Scholar
Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A. & Cotman, C. W. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J. Neurosci.14, 1992–2002 (2001). ArticleCASPubMed Google Scholar
Russo-Neustadt, A., Beard, R. C. & Cotman, C. W. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology21, 679–682 (1999). ArticleCASPubMed Google Scholar
Lauterborn, J. C., Poulsen, F. R., Stinis, C. T., Isackson, P. J. & Gall, C. M. Transcript-specific effects of adrenalectomy on seizure-induced BDNF expression in rat hippocampus. Brain Res. Mol. Brain Res.55, 81–91 (1998). ArticleCASPubMed Google Scholar
Lauterborn, J. C., Lynch, G., Vanderklish, P., Arai, A. & Gall, C. M. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci.20, 8–21 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dicou, E., Rangon, C. M., Guimiot, F., Spedding, M. & Gressens, P. Positive allosteric modulators of AMPA receptors are neuroprotective against lesions induced by an NMDA agonist in neonatal mouse brain. Brain Res.970, 221–225 (2003). ArticleCASPubMed Google Scholar
Spedding, M., Sebban, C. & Perret, L. New directions for drug discovery in psychiatric disease. Dialogues Clin. Neurosci.4, 336–341 (2002). Google Scholar
Krystal, J. H. et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl)169, 215–233 (2003). ArticleCAS Google Scholar
Bremner, J. D. et al. Reduced volume of orbitofrontal cortex in major depression. Biol. Psychiatry51, 273–279 (2002). ArticlePubMed Google Scholar
Campbell, S., Marriott, M., Nahmias, C. & MacQueen, G. M. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am. J. Psychiatry161, 598–607 (2004). ArticlePubMed Google Scholar
Shakesby, A. C., Anwyl, R. & Rowan, M. J. Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J. Neurosci.22, 3638–3644 (2002). ArticleCASPubMedPubMed Central Google Scholar
Czeh, B. et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl Acad. Sci. USA98, 12796–12801 (2001). ArticleCASPubMedPubMed Central Google Scholar
File, S. E., Zangrossi, H., Jr., Viana, M. & Graeff, F. G. Trial 2 in the elevated plus-maze: a different form of fear? Psychopharmacology (Berl)111, 491–494 (1993). ArticleCAS Google Scholar
Haller, J. & Halasz, J. Effects of two acute stressors on the anxiolytic efficacy of chlordiazepoxide. Psychopharmacology (Berl)151, 1–6 (2000). ArticleCAS Google Scholar
Kent, J. M., Mathew, S. J. & Gorman, J. M. Molecular targets in the treatment of anxiety. Biol. Psychiatry52, 1008–1030 (2002). ArticleCASPubMed Google Scholar
Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry44, 660–669 (1987). ArticleCASPubMed Google Scholar
Kalus, P., Senitz, D., Lauer, M. & Beckmann, H. Inhibitory cartridge synapses in the anterior cingulate cortex of schizophrenics. J. Neural. Transm.106, 763–771 (1999). ArticleCASPubMed Google Scholar
Beckmann, H. Developmental malformations in cerebral structures of schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci.249 (Suppl. 4), 44–47 (1999). ArticlePubMed Google Scholar
Gur, R. C., Gunning-Dixon, F., Bilker, W. B. & Gur, R. E. Sex differences in temporo–limbic and frontal brain volumes of healthy adults. Cereb. Cortex12, 998–1003 (2002). ArticlePubMed Google Scholar
Andreasen, N. C. et al. Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch. Gen. Psychiatry49, 943–958 (1992). ArticleCASPubMed Google Scholar
Harrison, P. J. The neuropathological effects of antipsychotic drugs. Schizophr. Res.40, 87–99 (1999). ArticleCASPubMed Google Scholar
Gogtay, N., Giedd, J. & Rapoport, J. L. Brain development in healthy, hyperactive, and psychotic children. Arch. Neurol.59, 1244–1248 (2002). ArticlePubMed Google Scholar
Tamminga, C. A. & Medoff, D. R. Studies in schizophrenia: pathophysiology and treatment. Dialogues Clin. Neurosci.4, 432–437 (2002). PubMedPubMed Central Google Scholar
Yamasaki, H., LaBar, K. S. & McCarthy, G. Dissociable prefrontal brain systems for attention and emotion. Proc. Natl Acad. Sci. USA99, 11447–11451 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sebban, C., Tesolin-Decros, B., Ciprian-Ollivier, J., Perret, L. & Spedding, M. Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA, α1- and 5-HT2A-receptors. Br. J. Pharmacol.135, 65–78 (2002). ArticleCASPubMedPubMed Central Google Scholar
Burghardt, N. S., Sullivan, G. M., McEwen, B. S., Gorman, J. M. & LeDoux, J. E. The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol. Psychiatry55, 1171–1178 (2004). ArticleCASPubMed Google Scholar
McEwen, B. S., Magarinos, A. M. & Reagan, L. P. Structural plasticity and tianeptine: cellular and molecular targets. Eur. Psychiatry17 (Suppl. 3), 318–330 (2002). ArticlePubMed Google Scholar
Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience125, 1–6 (2004). ArticleCASPubMed Google Scholar