Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. Biotechnology24, 524–526 (1992). PubMed Google Scholar
Yelton, D. E. & Scharff, M. D. Monoclonal antibodies: a powerful new tool in biology and medicine. Annu. Rev. Biochem.50, 657–680 (1981). ArticleCASPubMed Google Scholar
Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature332, 323–327 (1988). ArticleCASPubMed Google Scholar
Liu, A. Y. et al. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc. Natl Acad. Sci. USA84, 3439–3443 (1987). ArticleCASPubMed Google Scholar
Grillo-Lopez, A. J., Hedrick, E., Rashford, M. & Benyunes, M. Rituximab: ongoing and future clinical development. Semin. Oncol.29, 105–112 (2002). ArticleCASPubMed Google Scholar
Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotechnol.23, 1147–1157 (2005). ArticleCAS Google Scholar
Milenic, D. E., Brady, E. D. & Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nature Rev. Drug Discov.3, 488–499 (2004). An in depth review that describes the targeting of radionucleotides to tumors by antibodies. ArticleCAS Google Scholar
Garnett, M. C. Targeted drug conjugates: principles and progress. Adv. Drug Deliv. Rev.53, 171–216 (2001). ArticleCASPubMed Google Scholar
Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol.5, 121–132 (2004). ArticleCAS Google Scholar
Guillemard, V. & Uri, S. H. Prodrug chemotherapeutics bypass p-glycoprotein resistance and kill tumors in vivo with high efficacy and target-dependent selectivity. Oncogene23, 3613–3621 (2004). ArticleCASPubMed Google Scholar
Shen, W. C., Ballou, B., Ryser, H. J. & Hakala, T. R. Targeting, internalization, and cytotoxicity of methotrexate-monoclonal anti-stage-specific embryonic antigen-1 antibody conjugates in cultured F-9 teratocarcinoma cells. Cancer Res.46, 3912–3916 (1986). CASPubMed Google Scholar
Johnson, D. A. & Laguzza, B. C. Antitumor xenograft activity with a conjugate of a Vinca derivative and the squamous carcinoma-reactive monoclonal antibody PF1/D. Cancer Res.47, 3118–3122 (1987). CASPubMed Google Scholar
Dillman, R. O., Johnson, D. E., Shawler, D. L. & Koziol, J. A. Superiority of an acid-labile daunorubicin-monoclonal antibody immunoconjugate compared to free drug. Cancer Res.48, 6097–6102 (1988). CASPubMed Google Scholar
Doronina, S. O. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnol.21, 778–784 (2003). ArticleCAS Google Scholar
Jaracz, S., Chen, J., Kuznetsova, L. V. & Ojima, I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. (2005).
Deguchi, T., Chu, T. M., Leong, S. S., Horoszewicz, J. S. & Lee, C. L. Effect of methotrexate-monoclonal anti-prostatic acid phosphatase antibody conjugate on human prostate tumor. Cancer Res.46, 3751–3755 (1986). CASPubMed Google Scholar
Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nature Rev. Cancer2, 750–763 (2002). ArticleCAS Google Scholar
Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res.10, 7063–7070 (2004). ArticleCASPubMed Google Scholar
Petersen, B. H., DeHerdt, S. V., Schneck, D. W. & Bumol, T. F. The human immune response to KS1/4-desacetylvinblastine (LY256787) and KS1/4-desacetylvinblastine hydrazide (LY203728) in single and multiple dose clinical studies. Cancer Res.51, 2286–2290 (1991). CASPubMed Google Scholar
Carter, P. Improving the efficacy of antibody-based cancer therapies. Nature Rev. Cancer1, 118–129 (2001). ArticleCAS Google Scholar
Sievers, E. L. et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood93, 3678–3684 (1999). CASPubMed Google Scholar
Smith, S. V. Technology evaluation: cantuzumab mertansine, ImmunoGen. Curr. Opin. Mol. Ther.6, 666–674 (2004). CASPubMed Google Scholar
Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res.7, 1490–1496 (2001). A description of the preclinical and clinical data for Mylotarg and the regulatory review leading to approval. CASPubMed Google Scholar
Sievers, E. L. & Linenberger, M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr. Opin. Oncol.13, 522–527 (2001). ArticleCASPubMed Google Scholar
Nabhan, C. et al. Phase II pilot trial of gemtuzumab ozogamicin (GO) as first line therapy in acute myeloid leukemia patients age 65 or older. Leuk. Res.29, 53–57 (2005). ArticleCASPubMed Google Scholar
Tallman, M. S., Gilliland, D. G. & Rowe, J. M. Drug therapy of acute myeloid leukemia. Blood (2005).
Arceci, R. J. et al. Safety and efficacy of gemtuzumab ozogamicin (Mylotarg(R)) in pediatric patients with advanced CD33-positive acute myeloid leukemia. Blood (2005).
Sanderson, R. J. et al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res.11, 843–852 (2005). CASPubMed Google Scholar
Baloglu, E. et al. Synthesis and biological evaluation of novel taxoids designed for targeted delivery to tumors. Bioorg. Med. Chem. Lett.14, 5885–5888 (2004). ArticleCASPubMed Google Scholar
Mandler, R., Kobayashi, H., Hinson, E. R., Brechbiel, M. W. & Waldmann, T. A. Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res.64, 1460–1467 (2004). ArticleCASPubMed Google Scholar
Frankel, A. E. New anti-T cell immunotoxins for the clinic. Leuk. Res.29, 249–251 (2005). ArticlePubMed Google Scholar
Frankel, A. E., Kreitman, R. J. & Sausville, E. A. Targeted toxins. Clin. Cancer Res.6, 326–334 (2000). CASPubMed Google Scholar
Thorpe, P. E. et al. Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res.48, 6396–6403 (1988). CASPubMed Google Scholar
Hexham, J. M. et al. Influence of relative binding affinity on efficacy in a panel of anti-CD3 scFv immunotoxins. Mol. Immunol.38, 397–408 (2001). ArticleCASPubMed Google Scholar
Posey, J. A. et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin. Cancer Res.8, 3092–3099 (2002). CASPubMed Google Scholar
Frankel, A. E. Reducing the immune response to immunotoxin. Clin. Cancer Res.10, 13–15 (2004). This paper demonstrates the possibility of reducing the immunogenicity of immunotoxins. ArticleCASPubMed Google Scholar
Youn, Y. S., Na, D. H., Yoo, S. D., Song, S. C. & Lee, K. C. Carbohydrate-specifically polyethylene glycol-modified ricin A-chain with improved therapeutic potential. Int. J. Biochem. Cell Biol37, 1525–1533 (2005). ArticleCASPubMed Google Scholar
Arndt, M. A., Krauss, J., Vu, B. K., Newton, D. L. & Rybak, S. M. A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J. Immunother.28, 245–251 (2005). ArticleCASPubMed Google Scholar
Krauss, J., Arndt, M. A., Vu, B. K., Newton, D. L. & Rybak, S. M. Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzymedouble dagger. Br. J. Haematol.128, 602–609 (2005). ArticleCASPubMed Google Scholar
De Lorenzo, C. et al. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res.64, 4870–4874 (2004). ArticleCASPubMed Google Scholar
Liu, C. et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Natl Acad. Sci. USA93, 8618–8623 (1996). ArticleCASPubMed Google Scholar
Denny, W. A. Tumor-activated prodrugs-a new approach to cancer therapy. Cancer Invest.22, 604–619 (2004). ArticleCASPubMed Google Scholar
Chester, K. et al. Engineering antibodies for clinical applications in cancer. Tumour. Biol.25, 91–98 (2004). ArticleCASPubMed Google Scholar
Senter, P. D. & Springer, C. J. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv. Drug Deliv. Rev53, 247–264 (2001). A detailed review on antibody dependent enzyme prodrug therapy. ArticleCASPubMed Google Scholar
Sharma, S. K., Bagshawe, K. D. & Begent, R. H. Advances in antibody-directed enzyme prodrug therapy. Curr. Opin. Investig. Drugs6, 611–615 (2005). CASPubMed Google Scholar
Van Pel, A. & Boon, T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc. Natl Acad. Sci. USA79, 4718–4722 (1982). ArticleCAS Google Scholar
Rosenberg, S. A., Yang, J. C., White, D. E. & Steinberg, S. M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg.228, 307–319 (1998). ArticleCASPubMedPubMed Central Google Scholar
Robinson, B. W. et al. Cytokine gene therapy or infusion as treatment for solid human cancer. J Immunother.21, 211–217 (1998). ArticleCASPubMed Google Scholar
Soiffer, R. J., Robertson, M. J., Murray, C., Cochran, K. & Ritz, J. Interleukin-12 augments cytolytic activity of peripheral blood lymphocytes from patients with hematologic and solid malignancies. Blood82, 2790–2796 (1993). CASPubMed Google Scholar
Manusama, E. R. et al. Tumor necrosis factor-α in isolated perfusion systems in the treatment of cancer: the Rotterdam preclinical-clinical program. Semin. Surg. Oncol.14, 232–237 (1998). ArticleCASPubMed Google Scholar
Keilholz, U. et al. Recombinant interleukin-2-based treatments for advanced melanoma: the experience of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. Cancer J. Sci. Am.3 (Suppl. 1), S22–S28 (1997). PubMed Google Scholar
Mattijssen, V. et al. Intratumoral PEG-interleukin-2 therapy in patients with locoregionally recurrent head and neck squamous-cell carcinoma. Ann. Oncol.5, 957–960 (1994). ArticleCASPubMed Google Scholar
Lienard, D., Ewalenko, P., Delmotte, J. J., Renard, N. & Lejeune, F. J. High-dose recombinant tumor necrosis factor α in combination with interferon γ and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J Clin. Oncol.10, 52–60 (1992). ArticleCASPubMed Google Scholar
Hoogenboom, H. R., Volckaert, G. & Raus, J. C. Construction and expression of antibody-tumor necrosis factor fusion proteins. Mol. Immunol.28, 1027–1037 (1991). ArticleCASPubMed Google Scholar
Gillies, S. D., Young, D., Lo, K. M., Foley, S. F. & Reisfeld, R. A. Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma10, 347–356 (1991). ArticleCASPubMed Google Scholar
Gillies, S. D., Young, D., Lo, K. M. & Roberts, S. Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug. Chem.4, 230–235 (1993). A description of the biological activity of several immunocytokines. ArticleCASPubMed Google Scholar
Pancook, J. D., Becker, J. C., Gillies, S. D. & Reisfeld, R. A. Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-targeted interleukin-2. Cancer Immunol. Immunother.42, 88–92 (1996). ArticleCASPubMed Google Scholar
Becker, J. C., Pancook, J. D., Gillies, S. D., Mendelsohn, J. & Reisfeld, R. A. Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc. Natl Acad. Sci. USA93, 2702–2707 (1996). ArticleCASPubMed Google Scholar
Xiang, R. et al. Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res.57, 4948–4955 (1997). CASPubMed Google Scholar
Kendra, K. et al. Pharmacokinetics and stability of the ch14.18-interleukin-2 fusion protein in mice. Cancer Immunol. Immunother.48, 219–229 (1999). ArticleCASPubMed Google Scholar
Becker, J. C., Pancook, J. D., Gillies, S. D., Furukawa, K. & Reisfeld, R. A. T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J. Exp. Med.183, 2361–2366 (1996). ArticleCASPubMed Google Scholar
Lode, H. N. et al. Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood91, 1706–1715 (1998). CASPubMed Google Scholar
Niethammer, A. G. et al. Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res.61, 6178–6184 (2001). CASPubMed Google Scholar
Harvill, E. T., Fleming, J. M. & Morrison, S. L. In vivo properties of an IgG3-IL-2 fusion protein. A general strategy for immune potentiation. J. Immunol.157, 3165–3170 (1996). CASPubMed Google Scholar
Dela Cruz, J. S. et al. Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody-cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice. Vaccine21, 1317–1326 (2003). ArticleCASPubMed Google Scholar
Dela Cruz, J. S., Morrison, S. L. & Penichet, M. L. Insights into the mechanism of anti-tumor immunity in mice vaccinated with the human HER2/neu extracellular domain plus anti-HER2/neu IgG3-(IL-2) or anti-HER2/neu IgG3-(GM-CSF) fusion protein. Vaccine (2005). This paper describes an approach to induce immune responses to soluble antigen by immunocytokines.
King, D. M. et al. Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J. Clin. Oncol.22, 4463–4473 (2004). Results of the first phase I study of an IL-2 immunocytokine. ArticleCASPubMedPubMed Central Google Scholar
Ko, Y. J. et al. Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2): results of a phase I trial in patients with prostate cancer. J. Immunother.27, 232–239 (2004). ArticleCASPubMed Google Scholar
Dela Cruz, J. S., Trinh, K. R., Morrison, S. L. & Penichet, M. L. Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J. Immunol.165, 5112–5121 (2000). ArticleCASPubMed Google Scholar
Reisfeld, R. A., Gillies, S. D., Mendelsohn, J., Varki, N. M. & Becker, J. C. Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody- lymphotoxin fusion protein. Cancer Res56, 1707–1712 (1996). CASPubMed Google Scholar
Metelitsa, L. S. et al. Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcγRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood99, 4166–4173 (2002). ArticleCASPubMed Google Scholar
Borsi, L. et al. Selective targeted delivery of TNFα to tumor blood vessels. Blood102, 4384–4392 (2003). CAS Google Scholar
Ebbinghaus, C. et al. Engineered vascular-targeting antibody-interferon-γ fusion protein for cancer therapy. Int. J. Cancer116, 304–313 (2005). ArticleCASPubMed Google Scholar
Holliger, P. & Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nature Biotechnol.23, 1126–1136 (2005). ArticleCAS Google Scholar
Schrama, D. et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity.14, 111–121 (2001). ArticleCASPubMed Google Scholar
Halin, C. et al. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor α. Cancer Res.63, 3202–3210 (2003). CASPubMed Google Scholar
Hombach, A., Heuser, C. & Abken, H. Simultaneous targeting of IL2 and IL12 to Hodgkin's lymphoma cells enhances activation of resting NK cells and tumor cell lysis. Int. J. Cancer115, 241–247 (2005). ArticleCASPubMed Google Scholar
Hofmeister, V., Vetter, C., Schrama, D., Bröcker, E. B. & Becker, J. C. Tumor stroma-associated antigens for anti-cancer immunotherapy. Cancer Immunol. Immunother. 1–14 (2005).
Shimizu, M., Yoshimoto, T., Nagata, S. & Matsuzawa, A. A trial to kill tumor cells through Fas (CD95)-mediated apoptosis in vivo. Biochem. Biophys. Res. Commun.228, 375–379 (1996). ArticleCASPubMed Google Scholar
Timmer, T., de Vries, E. G. & de Jong, S. Fas receptor-mediated apoptosis: a clinical application? J. Pathol.196, 125–134 (2002). ArticleCASPubMed Google Scholar
Schneider, P. et al. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med.187, 1205–1213 (1998). ArticleCASPubMedPubMed Central Google Scholar
Samel, D. et al. Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J. Biol. Chem.278, 32077–32082 (2003). ArticleCASPubMed Google Scholar
Bremer, E. et al. Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res.65, 3380–3388 (2005). ArticleCASPubMed Google Scholar
Bremer, E. et al. Simultaneous inhibition of EGFR signaling and enhanced activation of TRAIL-R-mediated apoptosis induction by an scFv: sTRAIL fusion protein with specificity for human EGFR. J. Biol. Chem. (2005).
Ou, X. et al. Antitumor effects of radioiodinated antisense oligonuclide mediated by VIP receptor. Cancer Gene Ther.12, 313–320 (2005). ArticleCASPubMed Google Scholar
Brignole, C. et al. Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD(2) immunoliposome: immune cell-mediated anti-tumor activities. Cancer Lett.228, 181–186 (2005). ArticleCASPubMed Google Scholar
Schiffelers, R. M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res.32, e149 (2004). ArticlePubMedPubMed Central Google Scholar
Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol.23, 709–717 (2005). A study demonstrating the feasibility of antibody mediated, cell-type specific siRNA targeting. ArticleCAS Google Scholar
Moro, M. et al. Induction of therapeutic T-cell immunity by tumor targeting with soluble recombinant B7-immunoglobulin costimulatory molecules. Cancer Res.59, 2650–2656 (1999). CASPubMed Google Scholar
Grosse-Hovest, L. et al. A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur. J. Immunol.33, 1334–1340 (2003). ArticleCASPubMed Google Scholar
Kipriyanov, S. M., Moldenhauer, G., Strauss, G. & Little, M. Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int. J. Cancer77, 763–772 (1998). ArticleCASPubMed Google Scholar
Bruenke, J. et al. Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD19 and FcγRIII (CD16). Br. J. Haematol.130, 218–228 (2005). ArticleCASPubMed Google Scholar
Kipriyanov, S. M. et al. Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin's lymphoma. J. Immunol169, 137–144 (2002). ArticleCASPubMed Google Scholar
Gao, Y. et al. Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein x anti-CD3 diabody. Leukemia18, 513–520 (2004). ArticleCASPubMed Google Scholar
Wolf, E., Hofmeister, R., Kufer, P., Schlereth, B. & Baeuerle, P. A. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov. Today10, 1237–1244 (2005). A review of particular bispecific antibody constructs mediating anti-tumor effects by activating T cells. ArticleCASPubMed Google Scholar
Wang, X. B. et al. A new recombinant single chain trispecific antibody recruits T lymphocytes to kill CEA (carcinoma embryonic antigen) positive tumor cells in vitro efficiently. J. Biochem. (Tokyo)135, 555–565 (2004). ArticleCAS Google Scholar
Harris, M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol.5, 292–302 (2004). ArticleCASPubMed Google Scholar
Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. Making antibodies by phage display technology. Annu. Rev. Immunol12, 433–455 (1994). ArticleCASPubMed Google Scholar
Stohrer, M., Boucher, Y., Stangassinger, M. & Jain, R. K. Oncotic pressure in solid tumors is elevated. Cancer Res.60, 4251–4255 (2000). CASPubMed Google Scholar
Yokota, T., Milenic, D. E., Whitlow, M. & Schlom, J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res.52, 3402–3408 (1992). CASPubMed Google Scholar
Adams, G. P. et al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res.58, 485–490 (1998). CASPubMed Google Scholar
Neri, D. & Bicknell, R. Tumour vascular targeting. Nature Rev. Cancer5, 436–446 (2005). This review describes the anti-tumor effect of vascular targeting and strategies to identify putative tumor vascular targets. ArticleCAS Google Scholar
Oh, P. et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature429, 629–635 (2004). ArticleCAS Google Scholar
Gillies, S. D., Reilly, E. B., Lo, K. M. & Reisfeld, R. A. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc. Natl Acad. Sci. USA89, 1428–1432 (1992). ArticleCASPubMed Google Scholar
thor Straten, P. et al. Activation of preexisting T cell clones by targeted interleukin 2 therapy. Proc. Natl Acad. Sci. USA95, 8785–8790 (1998). ArticleCAS Google Scholar
Lode, H. N. et al. Melanoma immunotherapy by targeted IL-2 depends on CD4(+) T-cell help mediated by CD40/CD40L interaction. J. Clin. Invest.105, 1623–1630 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schrama, D. et al. Therapeutic efficacy of tumor-targeted IL2 in LTα (−/−) mice depends on conditioned T cells. Cancer Immunol. Immunother. 1–6 (2005).
Neal, Z. C. et al. Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin. Cancer Res.10, 4839–4847 (2004). ArticleCASPubMed Google Scholar
Eggert, A. O. et al. Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture. Eur. J. Immunol32, 122–127 (2002). ArticleCASPubMed Google Scholar
Schrama, D. et al. Shift from systemic to site-specific memory by tumor-targeted IL-2. J. Immunol.172, 5843–5850 (2004). ArticleCASPubMed Google Scholar
Penichet, M. L., Harvill, E. T. & Morrison, S. L. An IgG3–IL-2 fusion protein recognizing a murine B cell lymphoma exhibits effective tumor imaging and antitumor activity. J. Interferon Cytokine Res.18, 597–607 (1998). ArticleCASPubMed Google Scholar
Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nature Biotechnol.23, 1137–1146 (2005). ArticleCAS Google Scholar
Francis, R. J. et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br. J. Cancer87, 600–607 (2002). ArticleCASPubMedPubMed Central Google Scholar