Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy (original) (raw)
Massoud, T. F. & Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev.17, 545–580 (2003) ArticleCAS Google Scholar
Herschman, H. R. Molecular imaging: looking at problems, seeing solutions. Science302, 605–608 (2003) ArticleADSCAS Google Scholar
Rudin, M. & Weissleder, R. Molecular imaging in drug discovery and development. Nature Rev. Drug Discov.2, 123–131 (2003) ArticleCAS Google Scholar
Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer2, 11–18 (2002) ArticleCAS Google Scholar
Lindsay, M. A. Target discovery. Nature Rev. Drug Discov.2, 831–838 (2003) ArticleCAS Google Scholar
Workman, P. New drug targets for genomic cancer therapy: successes, limitations, opportunities and future challenges. Curr. Cancer Drug Targets1, 33–47 (2001) ArticleCAS Google Scholar
Anzick, S. L. & Trent, J. M. Role of genomics in identifying new targets for cancer therapy. Oncology (Huntingt.)16, 7–13 (2002) Google Scholar
Cavenee, W. K. Genetics and new approaches to cancer therapy. Carcinogenesis23, 683–686 (2002) ArticleCAS Google Scholar
Huber, L. A. Is proteomics heading in the wrong direction? Nature Rev. Mol. Cell Biol.4, 74–80 (2003) ArticleCAS Google Scholar
Perou, C. M. et al. Molecular portraits of human breast tumours. Nature406, 747–752 (2000) ArticleADSCAS Google Scholar
Jain, R. K. The next frontier of molecular medicine: delivery of therapeutics. Nature Med.4, 655–657 (1998) ArticleCAS Google Scholar
Dvorak, H. F., Nagy, J. A. & Dvorak, A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells3, 77–85 (1991) CASPubMed Google Scholar
von Mehren, M., Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy for cancer. Annu. Rev. Med.54, 343–369 (2003) ArticleCAS Google Scholar
Farah, R. A., Clinchy, B., Herrera, L. & Vitetta, E. S. The development of monoclonal antibodies for the therapy of cancer. Crit. Rev. Eukaryot. Gene Expr.8, 321–356 (1998) ArticleCAS Google Scholar
Carver, L. A. & Schnitzer, J. E. Caveolae: mining little caves for new cancer targets. Nature Rev. Cancer3, 571–581 (2003) ArticleCAS Google Scholar
Schnitzer, J. E. Vascular targeting as a strategy for cancer therapy. N. Engl. J. Med.339, 472–474 (1998) ArticleCAS Google Scholar
Madri, J. A. & Williams, S. K. Capillary endothelial cell culture: Phenotype modulation by matrix components. J. Cell Biol.97, 153–165 (1983) ArticleCAS Google Scholar
Schnitzer, J. E. in Vascular Endothelium: Physiology, Pathology and Therapeutic Opportunities (eds Born, G. V. R. & Schwartz, C. J.) 77–95 (Schattauer, Stuttgart, 1997) Google Scholar
Aird, W. C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol.138, 1117–1124 (1997) ArticleCAS Google Scholar
Janzer, R. C. & Raff, M. C. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature325, 253–257 (1987) ArticleADSCAS Google Scholar
Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol.84, 183–192 (1981) ArticleCAS Google Scholar
Auerbach, R. et al. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer Res.47, 1492–1496 (1987) CASPubMed Google Scholar
Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature380, 364–366 (1996) ArticleADSCAS Google Scholar
Rajotte, D. et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest.102, 430–437 (1998) ArticleCAS Google Scholar
Papetti, M. & Herman, I. M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol.282, C947–C970 (2002) ArticleCAS Google Scholar
Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nature Rev. Cancer2, 795–803 (2002) ArticleCAS Google Scholar
Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer2, 727–739 (2002) ArticleCAS Google Scholar
St Croix, B. et al. Genes expressed in human tumor endothelium. Science289, 1197–1202 (2000) ArticleADSCAS Google Scholar
Huang, X. et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science275, 547–550 (1997) ArticleCAS Google Scholar
McIntosh, D. P., Tan, X.-Y., Oh, P. & Schnitzer, J. E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: A pathway to overcome cell barriers to drug and gene delivery. Proc. Natl Acad. Sci. USA99, 1996–2001 (2002) ArticleADSCAS Google Scholar
Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nature Med.4, 623–626 (1998) ArticleCAS Google Scholar
Hu, Z. & Garen, A. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer. Proc. Natl Acad. Sci. USA98, 12180–12185 (2001) ArticleADSCAS Google Scholar
Hood, J. D. et al. Tumor regression by targeted gene delivery to the neovasculature. Science296, 2404–2407 (2002) ArticleADSCAS Google Scholar
Oh, P. & Schnitzer, J. E. in Cell Biology: A Laboratory Handbook (ed. Celis, J.) 34–36 (Academic Press, Orlando, 1998) Google Scholar
Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science269, 1435–1439 (1995) ArticleADSCAS Google Scholar
Schnitzer, J. E. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol.262, H246–H254 (1992) CASPubMed Google Scholar
Henniker, A. J., Bradstock, K. F., Grimsley, P. & Atkinson, M. K. A novel non-lineage antigen on human leucocytes: characterization with two CD-48 monoclonal antibodies. Dis. Markers8, 179–190 (1990) CASPubMed Google Scholar
Essler, M. & Ruoslahti, E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl Acad. Sci. USA99, 2252–2257 (2002) ArticleADSCAS Google Scholar
Perillo, N. L., Marcus, M. E. & Baum, L. G. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med.76, 402–412 (1998) ArticleCAS Google Scholar
Gerke, V. & Moss, S. E. Annexins: from structure to function. Physiol. Rev.82, 331–371 (2002) ArticleCAS Google Scholar
Dreier, R., Schmid, K. W., Gerke, V. & Riehemann, K. Differential expression of annexins I, II and IV in human tissues: an immunohistochemical study. Histochem. Cell Biol.110, 137–148 (1998) ArticleCAS Google Scholar
Eberhard, D. A., Brown, M. D. & VandenBerg, S. R. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and p11 subunits), IV, and VI in the human hippocampus. Am. J. Pathol.145, 640–649 (1994) CASPubMedPubMed Central Google Scholar
Ahn, S. H., Sawada, H., Ro, J. Y. & Nicolson, G. L. Differential expression of annexin I in human mammary ductal epithelial cells in normal and benign and malignant breast tissues. Clin. Exp. Metastasis15, 151–156 (1997) ArticleCAS Google Scholar
McKanna, J. A. & Zhang, M. Z. Immunohistochemical localization of lipocortin 1 in rat brain is sensitive to pH, freezing, and dehydration. J. Histochem. Cytochem.45, 527–538 (1997) ArticleCAS Google Scholar
Bredow, S., Lewin, M., Hofmann, B., Marecos, E. & Weissleder, R. Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur. J. Cancer36, 675–681 (2000) ArticleCAS Google Scholar