Cellular imaging in drug discovery (original) (raw)
Hood, L. & Perlmutter, R. M. The impact of systems approaches on biological problems in drug discovery. Nature Biotechnol.22, 1215–1217 (2004). ArticleCAS Google Scholar
Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov. Today10, 139–147 (2005). ArticleCASPubMed Google Scholar
Besson, D., Yeow, K., Lang, P. & Scheer, A. HTS and cellular biology at Serono. Curr. Drug Discov. 29–32 (2003).
Comley, J. High content screening: emerging importance of novel reagents/probes and pathway analysis. Drug Discov. World6, 31–54 (2005). Google Scholar
Ramm, P. Image-based screening: a technology in transition. Curr. Opin. Biotechnol.16, 41–48 (2005).This review describes the advantages and disadvantages of using cellular imaging technologies in screening, and provides clues of what future cellular imaging systems requirements are for HTS purposes. ArticleCASPubMed Google Scholar
Bivona, T. G. & Philips, M. R. Analysis of Ras and Rap activation in living cells using fluorescent Ras binding domains. Methods37, 138–145 (2005). ArticleCASPubMed Google Scholar
Voss, T. C., Demarco, I. A. & Day, R. N. Quantitative imaging of protein interactions in the cell nucleus. Biotechniques38, 413–424 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sekar, R. B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol.160, 629–633 (2003). ArticleCASPubMedPubMed Central Google Scholar
Errington, R. J. et al. Advanced microscopy solutions for monitoring the kinetics and dynamics of drug–DNA targeting in living cells. Adv. Drug Deliv. Rev.57, 153–167 (2005). ArticleCASPubMed Google Scholar
von Arnim, C. A. et al. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem.280, 17777–17785 (2005). ArticleCASPubMed Google Scholar
Herzenberg, L. A. et al. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem.48, 1819–1827 (2002). CASPubMed Google Scholar
Geuijen, C. A. et al. Affinity ranking of antibodies using flow cytometry: application in antibody phage display-based target discovery. J. Immunol. Methods302, 68–77 (2005). ArticleCASPubMed Google Scholar
Florian, S. et al. Detection of molecular targets on the surface of CD34+/CD38– stem cells in various myeloid malignancies. Leuk. Lymphoma47, 207–222 (2006). ArticleCASPubMed Google Scholar
Heinemann, A. et al. Basophil responses to chemokines are regulated by both sequential and cooperative receptor signaling. J. Immunol.165, 7224–7233 (2000). ArticleCASPubMed Google Scholar
Miller, S. C. & Mitchison, T. J. Synthesis and phenotypic screening of a guanine-mimetic library. Chembiochem.5, 1010–1012 (2004). ArticleCASPubMed Google Scholar
Yarrow, J. C., Feng, Y., Perlman, Z. E., Kirchhausen, T. & Mitchison, T. J. Phenotypic screening of small molecule libraries by high throughput cell imaging. Comb. Chem. High Throughput. Screen.6, 279–286 (2003).Highlights the power of cellular imaging in finding active small molecules and shows how compound progression can be carried out to find the molecular target affecting cellular phenotype. ArticleCASPubMed Google Scholar
Yarrow, J. C., Totsukawa, G., Charras, G. T. & Mitchison, T. J. Screening for cell migration inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chem. Biol.12, 385–395 (2005). ArticleCASPubMed Google Scholar
Ramm, P. et al. Automated screening of neurite outgrowth. J. Biomol. Screen.8, 7–18 (2003). ArticlePubMed Google Scholar
Richards, G. R., Millard, R. M., Leveridge, M., Kerby, J. & Simpson, P. B. Quantitative assays of chemotaxis and chemokinesis for human neural cells. Assay. Drug Dev. Technol.2, 465–472 (2004). ArticleCASPubMed Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCASPubMed Google Scholar
Eggert, U. S. et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol.2, e379 (2004). ArticlePubMedPubMed Central Google Scholar
Mattheakis, L. C. et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem.327, 200–208 (2004). ArticleCASPubMed Google Scholar
Edwards, B. S., Oprea, T., Prossnitz, E. R. & Sklar, L. A. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol.8, 392–398 (2004). ArticleCASPubMed Google Scholar
Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell118, 217–228 (2004).An impressive paper demonstrating how flow cytometry using antiphospho antibodies can provide new ways of clustering cancer-patient populations according to signalling pathways. ArticleCASPubMed Google Scholar
Morgan, E. et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin. Immunol.110, 252–266 (2004). ArticleCASPubMed Google Scholar
Wong, C. K., Cheung, P. F., Ip, W. K. & Lam, C. W. Interleukin-25-induced chemokines and interleukin-6 release from eosinophils is mediated by p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and nuclear factor-κB. Am. J. Respir. Cell Mol. Biol.33, 186–194 (2005). ArticleCASPubMed Google Scholar
Rausch, O. Use of high-content analysis for compound screening and target selection. IDrugs8, 573–577 (2005). CASPubMed Google Scholar
Wu, C. C., Reilly, J. F., Young, W. G., Morrison, J. H. & Bloom, F. E. High-throughput morphometric analysis of individual neurons. Cereb. Cortex14, 543–554 (2004). ArticlePubMed Google Scholar
Burnett, P. et al. Fluorescence imaging of electrically stimulated cells. J. Biomol. Screen.8, 660–667 (2003). ArticleCASPubMed Google Scholar
Ramm, P. Advanced image analysis systems in cell, molecular and neurobiology applications. J. Neurosci. Methods54, 131–149 (1994). ArticleCASPubMed Google Scholar
Takahashi, Y., Sawada, R., Ishibashi, K., Mikuni, S. & Kinjo, M. Analysis of cellular functions by multipoint fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol.6, 159–165 (2005). ArticleCASPubMed Google Scholar
Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. Imaging biochemistry inside cells. Trends Cell Biol.11, 203–211 (2001). ArticleCASPubMed Google Scholar
Watson, P., Jones, A. T. & Stephens, D. J. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv. Drug Deliv. Rev.57, 43–61 (2005). ArticleCASPubMed Google Scholar
Gasparri, F., Mariani, M., Sola, F. & Galvani, A. Quantification of the proliferation index of human dermal fibroblast cultures with the ArrayScan high-content screening reader. J. Biomol. Screen.9, 232–243 (2004). ArticleCASPubMed Google Scholar
Schroeder, K. S. & Neagle, B. D. FLIPR: a new instrument for accurate, high throughput optical screening. J. Biomol. Screen.1, 75–80 (1996).Describes the first application of a fluorometric imaging plate reader (FLIPR), one of the most widely adopted cellular imaging tools in the pharmaceutical industry so far. ArticleCAS Google Scholar
Reynen, P. H., Martin, G. R., Eglen, R. M. & MacLennan, S. J. Characterization of human recombinant α2A-adrenoceptors expressed in Chinese hamster lung cells using intracellular Ca2+ changes: evidence for cross-talk between recombinant α2A- and native α1-adrenoceptors. Br. J. Pharmacol.129, 1339–1346 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nickolls, S. A., Fleck, B., Hoare, S. R. & Maki, R. A. Functional selectivity of melanocortin 4 receptor peptide and nonpeptide agonists: evidence for ligand-specific conformational states. J. Pharmacol. Exp. Ther.313, 1281–1288 (2005). ArticleCASPubMed Google Scholar
Gopalakrishnan, S. M. et al. An offline-addition format for identifying GPCR modulators by screening 384-well mixed compounds in the FLIPR. J. Biomol. Screen.10, 46–55 (2005). ArticleCASPubMed Google Scholar
Patel, K. et al. Activity of diadenosine polyphosphates at P2Y receptors stably expressed in 1321N1 cells. Eur. J. Pharmacol.430, 203–210 (2001). ArticleCASPubMed Google Scholar
Benjamin, E. R. et al. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharma-cological agents. J. Biomol. Screen.11, 29–39 (2005). ArticleCASPubMed Google Scholar
Benjamin, E. R. et al. Validation of a fluorescent imaging plate reader membrane potential assay for high-throughput screening of glycine transporter modulators. J. Biomol. Screen.10, 365–373 (2005). ArticleCASPubMed Google Scholar
Giuliano, K. A. & Taylor, D. L. Fluorescent-protein biosensors: new tools for drug discovery. Trends Biotechnol.16, 135–140 (1998). ArticleCASPubMed Google Scholar
Ghosh, R. N., Grove, L. & Lapets, O. A quantitative cell-based high-content screening assay for the epidermal growth factor receptor-specific activation of mitogen-activated protein kinase. Assay. Drug Dev. Technol.2, 473–481 (2004). ArticleCASPubMed Google Scholar
Kapur, R. Fluorescence imaging and engineered biosensors: functional and activity-based sensing using high content screening. Ann. NY Acad. Sci.961, 196–197 (2002). ArticlePubMed Google Scholar
Grepin, C. et al. Increasing the quality of compounds isolated during primary screening: high content screening with Acumen Explorer. Curr. Drug Discov.3, 37–42 (2003). Google Scholar
Jager, S. et al. A modular, fully integrated ultra-high-throughput screening system based on confocal fluorescence analysis techniques. J. Biomol. Screen.8, 648–659 (2003). ArticleCASPubMed Google Scholar
Oakley, R. H. et al. The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay. Drug Dev. Technol.1, 21–30 (2002). ArticleCASPubMed Google Scholar
Fowler, A., Davies, I. & Norey, C. A multi-modality assay platform for ultra-high throughput screening. Curr. Pharm. Biotechnol.1, 265–281 (2000). ArticleCASPubMed Google Scholar
Almholt, D. L. et al. Nuclear export inhibitors and kinase inhibitors identified using a MAPK-activated protein kinase 2 redistribution screen. Assay. Drug Dev. Technol.2, 7–20 (2004). ArticleCASPubMed Google Scholar
Almholt, K. et al. Changes in intracellular cAMP reported by a redistribution assay using a cAMP-dependent protein kinase-green fluorescent protein chimera. Cell Signal.16, 907–920 (2004). ArticleCASPubMed Google Scholar
Bertelsen, M. & Sanfridson, A. Inflammatory pathway analysis using a high content screening platform. Assay. Drug Dev. Technol.3, 261–271 (2005).Describes the application of cellular imaging to compound profiling by monitoring its efficacy across various signalling pathways. ArticleCASPubMed Google Scholar
Li, Z. et al. Identification of gap junction blockers using automated fluorescence microscopy imaging. J. Biomol. Screen.8, 489–499 (2003). ArticleCASPubMed Google Scholar
Lundholt, B. K. et al. Identification of Akt pathway inhibitors using redistribution screening on the FLIPR and the IN Cell 3000 analyzer. J. Biomol. Screen.10, 20–29 (2005).Describes the use of a HT cellular imaging device to screen compounds and a high-content screening cellular imaging platform to understand the mode of action of a compound. ArticleCASPubMed Google Scholar
Borchert, K. M. et al. High-content screening assay for activators of the Wnt/Fzd pathway in primary human cells. Assay. Drug Dev. Technol.3, 133–141 (2005). ArticleCASPubMed Google Scholar
Horrocks, C., Halse, R., Suzuki, R. & Shepherd, P. R. Human cell systems for drug discovery. Curr. Opin. Drug Discov. Devel.6, 570–575 (2003). CASPubMed Google Scholar
Obinata, M. Possible applications of conditionally immortalized tissue cell lines with differentiation functions. Biochem. Biophys. Res. Commun.286, 667–672 (2001). ArticleCASPubMed Google Scholar
McNeish, J. Embryonic stem cells in drug discovery. Nature Rev. Drug Discov.3, 70–80 (2004).This review highlights the potential power of using stem cells in target discovery and primary screening. ArticleCAS Google Scholar
Allen, M. et al. Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med.191, 859–870 (2000). ArticleCASPubMedPubMed Central Google Scholar
Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA99, 4391–4396 (2002). ArticleCASPubMedPubMed Central Google Scholar
Trounson, A. The production and directed differentiation of human embryonic stem cells. Endocr. Rev. 24 Jan 2006 [epub ahead of print]. Google Scholar
Laschinski, G., Vogel, R. & Spielmann, H. Cytotoxicity test using blastocyst-derived euploid embryonal stem cells: a new approach to in vitro teratogenesis screening. Reprod. Toxicol.5, 57–64 (1991). ArticleCASPubMed Google Scholar
Mitchell, K. E. et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells21, 50–60 (2003). ArticleCASPubMed Google Scholar
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov.3, 711–715 (2004). ArticleCAS Google Scholar
Ulrich, R. & Friend, S. H. Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nature Rev. Drug Discov.1, 84–88 (2002). ArticleCAS Google Scholar
Smith, D. A. & van de, W. H. Pharmacokinetics and metabolism in early drug discovery. Curr. Opin. Chem. Biol.3, 373–378 (1999). ArticleCASPubMed Google Scholar
Waters, M. D. & Fostel, J. M. Toxicogenomics and systems toxicology: aims and prospects. Nature Rev. Genet.5, 936–948 (2004). ArticleCASPubMed Google Scholar
Riley, R. J. & Kenna, J. G. Cellular models for ADMET predictions and evaluation of drug–drug interactions. Curr. Opin. Drug Discov. Dev.7, 86–99 (2004). CAS Google Scholar
Nersesyan, K., Melikyan, G. S. & Stopper, H. Genotoxic activity of newly synthesized derivatives of cyano-pyridone in murine cells in vivo and in vitro. Tsitol. Genet.38, 44–48 (2004). CASPubMed Google Scholar
Tice, R. R. et al. Report from the working group on the in vivo mammalian bone marrow chromosomal aberration test. Mutat. Res.312, 305–312 (1994). ArticleCASPubMed Google Scholar
Fenech, M. In vitro micronucleus technique to predict chemosensitivity. Methods Mol. Med.111, 3–32 (2005). PubMed Google Scholar
Fenech, M. The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ. Health Perspect.101 (Suppl. 3), 101–107 (1993). CASPubMedPubMed Central Google Scholar
Ekins, S., Nikolsky, Y. & Nikolskaya, T. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol. Sci.26, 202–209 (2005). ArticleCASPubMed Google Scholar
Pritchard, J. F. et al. Making better drugs: decision gates in non-clinical drug development. Nature Rev. Drug Discov.2, 542–553 (2003). ArticleCAS Google Scholar
Lesko, L. J. & Atkinson, A. J. Jr. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu. Rev. Pharmacol. Toxicol.41, 347–366 (2001). ArticleCASPubMed Google Scholar
Frank, R. & Hargreaves, R. Clinical biomarkers in drug discovery and development. Nature Rev. Drug Discov.2, 566–580 (2003). ArticleCAS Google Scholar
De Meyer, G. & Shapiro, F. Biomarker development:the road to clinical utility. Curr. Drug Discov.12, 23–37 (2003). Google Scholar
Rolan, P., Atkinson, A. J. Jr & Lesko, L. J. Use of biomarkers from drug discovery through clinical practice: report of the Ninth European Federation of Pharmaceutical Sciences Conference on Optimizing Drug Development. Clin. Pharmacol. Ther.73, 284–291 (2003). ArticlePubMed Google Scholar
Koop, R. Combinatorial biomarkers: from early toxicology assays to patient population profiling. Drug Discov. Today10, 781–788 (2005). ArticleCASPubMed Google Scholar
Nishimura, T. et al. Disease proteomics toward bedside reality. J. Gastroenterol.40 (Suppl. 16), 7–13 (2005). ArticleCASPubMed Google Scholar
Liu, E. T. Expression genomics and drug development: towards predictive pharmacology. Brief. Funct. Genomic. Proteomic.3, 303–321 (2005). ArticlePubMed Google Scholar
Shibazaki, M., Takeuchi, T., Ahmed, S. & Kikuchia, H. Blockade by SB203580 of Cyp1a1 induction by 2,3, 7,8-tetrachlorodibenzo-_p_-dioxin, and the possible mechanism: possible involvement of the p38 mitogen-activated protein kinase pathway in shuttling of Ah receptor overexpressed in COS-7 cells. Ann. NY Acad. Sci.1030, 275–281 (2004). ArticleCASPubMed Google Scholar
Traxler, P. et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res.64, 4931–4941 (2004). ArticleCASPubMed Google Scholar
Koga, H. et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol.45, 1622–1630 (2005). ArticleCASPubMed Google Scholar
Bick, R. J. et al. Fluorescence imaging microscopy of cellular markers in ischemic vs non-ischemic cardiomyopathy after left ventricular unloading. J. Heart Lung Transplant.24, 454–461 (2005). ArticlePubMed Google Scholar
Kelloff, G. J. & Sigman, C. C. New science-based endpoints to accelerate oncology drug development. Eur. J. Cancer41, 491–501 (2005). ArticlePubMed Google Scholar
Colburn, W. A. Biomarkers in drug discovery and development: from target identification through drug marketing. J. Clin. Pharmacol.43, 329–341 (2003). ArticlePubMed Google Scholar
Rathbun, R. C. Surrogate markers for assessing treatment response in HIV disease. Ann. Pharmacother.27, 450–455 (1993).Demonstrates how cellular imaging can be used in the field of clinical biomarkers by monitoring CD4 cell count in patients with HIV. ArticleCASPubMed Google Scholar
Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science306, 1194–1198 (2004).A study that demonstrates the power of cell systems tools when combined with cellular imaging to profile drugs and understand their mechanism of action. ArticleCASPubMed Google Scholar
Nolan, J. P., Lauer, S., Prossnitz, E. R. & Sklar, L. A. Flow cytometry: a versatile tool for all phases of drug discovery. Drug Discov. Today4, 173–180 (1999). ArticleCASPubMed Google Scholar
Asadullah, K., Sterry, W. & Volk, H. D. Analysis of cytokine expression in dermatology. Arch. Dermatol.138, 1189–1196 (2002). ArticleCASPubMed Google Scholar
Duramad, P., McMahon, C. W., Hubbard, A., Eskenazi, B. & Holland, N. T. Flow cytometric detection of intracellular TH1/TH2 cytokines using whole blood: validation of immunologic biomarker for use in epidemiologic studies. Cancer Epidemiol. Biomarkers Prev.13, 1452–1458 (2004). CASPubMed Google Scholar
de Weck, A. L. et al. Lymphocyte proliferation, lymphokine production, and lymphocyte receptors in ageing and various clinical conditions. Springer Semin. Immunopathol.7, 273–289 (1984). ArticleCASPubMed Google Scholar
Lacombe, F. & Belloc, F. Flow cytometry study of cell cycle, apoptosis and drug resistance in acute leukemia. Hematol. Cell Ther.38, 495–504 (1996). ArticleCASPubMed Google Scholar
Krutzik, P. O., Irish, J. M., Nolan, G. P. & Perez, O. D. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin. Immunol.110, 206–221 (2004). ArticleCASPubMed Google Scholar
Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater.4, 435–446 (2005). ArticleCAS Google Scholar
Paris, S. & Sesboue, R. Metastasis models: the green fluorescent revolution? Carcinogenesis25, 2285–2292 (2004). ArticleCASPubMed Google Scholar
Chishima, T. et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res.57, 2042–2047 (1997). CASPubMed Google Scholar
Kan, Z. & Liu, T. J. Video microscopy of tumor metastasis: using the green fluorescent protein (GFP) gene as a cancer-cell-labeling system. Clin. Exp. Metastasis17, 49–55 (1999). ArticleCASPubMed Google Scholar
Rice, B. W., Cable, M. D. & Nelson, M. B. In vivo imaging of light-emitting probes. J. Biomed. Opt.6, 432–440 (2001). ArticleCASPubMed Google Scholar
Uhrbom, L., Nerio, E. & Holland, E. C. Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nature Med.10, 1257–1260 (2004). ArticleCASPubMed Google Scholar
Kumar, S., Kahn, M. A., Dinh, L. & de Vellis, J. NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J. Neurosci. Res.54, 754–765 (1998). ArticleCASPubMed Google Scholar
Gao, X. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16, 63–72 (2005). ArticleCASPubMed Google Scholar
Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307, 538–544 (2005).Illustrates the potential of quantum dot beads to track cell fatein vivo, and exemplifies the possibility of multiplexing cellular imaging technology. ArticleCASPubMedPubMed Central Google Scholar
Fischer, H. P. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnol. Annu. Rev.11, 1–68 (2005). ArticleCASPubMed Google Scholar
Butcher, E. C. Can cell systems biology rescue drug discovery? Nature Rev. Drug Discov.4, 461–467 (2005). ArticleCAS Google Scholar
Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science308, 523–529 (2005). ArticleCASPubMed Google Scholar
Miyawaki, A., Sawano, A. & Kogure, T. Lighting up cells: labelling proteins with fluorophores. Nature Cell Biol. (Suppl.), S1–S7 (2003).
Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol.3, 906–918 (2002). ArticleCAS Google Scholar
Verkhusha, V. V. & Lukyanov, K. A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnol.22, 289–296 (2004). ArticleCAS Google Scholar
Lukyanov, K. A., Chudakov, D. M., Lukyanov, S. & Verkhusha, V. V. Innovation: photoactivatable fluorescent proteins. Nature Rev. Mol. Cell Biol.6, 885–891 (2005). ArticleCAS Google Scholar
Hercend, T. et al. Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: a feasibility trial in metastatic renal cell carcinoma. J. Biol. Response Mod.9, 546–555 (1990). CASPubMed Google Scholar
Nagy, R. D. et al. Stem cell transplantation as a therapeutic approach to organ failure. J. Surg. Res.129, 152–160 (2005). ArticleCASPubMed Google Scholar
Nir, T. & Dor, Y. How to make pancreatic β cells — prospects for cell therapy in diabetes. Curr. Opin. Biotechnol.16, 524–529 (2005). ArticleCASPubMed Google Scholar
Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev.19, 1129–1155 (2005). ArticleCASPubMed Google Scholar
Wollert, K. C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004). ArticlePubMed Google Scholar
Tang, Y. L. Cellular therapy with autologous skeletal myoblasts for ischemic heart disease and heart failure. Methods Mol. Med.112, 193–204 (2005). PubMed Google Scholar
Sykes, M. & Nikolic, B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature435, 620–627 (2005). ArticleCASPubMed Google Scholar
Radbruch, A. & Thiel, A. Cell therapy for autoimmune diseases: does it have a future? Ann. Rheum. Dis.63 (Suppl. 2), ii96–ii101 (2004). CASPubMedPubMed Central Google Scholar
Mattson, M. P. Emerging neuroprotective strategies for Alzheimer's disease: dietary restriction, telomerase activation, and stem cell therapy. Exp. Gerontol.35, 489–502 (2000). ArticleCASPubMed Google Scholar
Tuszynski, M. H. et al. A Phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Med.11, 551–555 (2005). ArticleCASPubMed Google Scholar
Brundin, P. et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain123, 1380–1390 (2000). ArticlePubMed Google Scholar
Widner, H. et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med.327, 1556–1563 (1992). ArticleCASPubMed Google Scholar
Bulte, J. W. Hot spot MRI emerges from the back-ground. Nature Biotechnol.23, 945–946 (2005). ArticleCAS Google Scholar
Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med.4, 1313–1317 (1998). ArticleCASPubMed Google Scholar
Zhu, J., Wu, X. & Zhang, H. L. Adult neural stem cell therapy: expansion in vitro, tracking in vivo and clinical transplantation. Curr. Drug Targets6, 97–110 (2005). ArticleCASPubMed Google Scholar
Frangioni, J. V. & Hajjar, R. J. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation110, 3378–3383 (2004). ArticlePubMed Google Scholar
Vogt, A. et al. Cell-active dual specificity phosphatase inhibitors identified by high-content screening. Chem. Biol.10, 733–742 (2003). ArticleCASPubMed Google Scholar
DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ.22, 151–185 (2003). ArticlePubMed Google Scholar