The mighty mouse: genetically engineered mouse models in cancer drug development (original) (raw)
Leaf, C. Why we're losing the war on cancer: and how to win it. Fortune149, 77–92 (2004). Google Scholar
National Cancer Institute. Cancer Trends Progress Report[online] (2005).
Weiss, A. J. et al. Phase II study of 5-azacytidine in solid tumors. Cancer Treat. Rep.61, 55–58 (1977). CASPubMed Google Scholar
Lomen, P. L., Khilanani, P. & Kessel, D. Phase I study using combination of hydroxyurea and 5-azacytidine (NSC-102816). Neoplasma27, 101–106 (1980). CASPubMed Google Scholar
Lomen, P. L., Baker, L. H., Neil, G. L. & Samson, M. K. Phase I study of 5-azacytidine (NSC-102816) using 24-hour continuous infusion for 5 days. Cancer Chemother. Rep.59, 1123–1126 (1975). CASPubMed Google Scholar
Silverman, L. R. et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol.20, 2429–2440 (2002). CASPubMed Google Scholar
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov.3, 711–715 (2004). CAS Google Scholar
Horrobin, D. F. Are large clinical trials in rapidly lethal diseases usually unethical? Lancet361, 695–697 (2003). PubMed Google Scholar
Decoster, G., Stein, G. & Holdener, E. E. Responses and toxic deaths in phase I clinical trials. Ann. Oncol.1, 175–181 (1990). CASPubMed Google Scholar
Roberts, T. G. et al. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. JAMA292, 2130–2140 (2004). References 9 and 10 illustrate a significant problem with Phase I trials (namely a ∼4% response rate) carried out using empirically discovered would-be chemotherapeutics. We believe that using better preclinical models would improve this low level of clinical benefit, allowing for more efficient and ethical drug discovery. CASPubMed Google Scholar
Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res.9, 4227–4239 (2003). PubMed Google Scholar
Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer84, 1424–1431 (2001). CASPubMedPubMed Central Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). CASPubMed Google Scholar
Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005). CASPubMed Google Scholar
Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Med.4, 1046–1052 (1998). CASPubMed Google Scholar
Kulke, M. H. et al. A phase II study of troglitazone, an activator of the PPARγ receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J.8, 395–399 (2002). PubMed Google Scholar
Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nature Med.4, 1058–1061 (1998). CASPubMed Google Scholar
Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature390, 404–407 (1997). CASPubMed Google Scholar
O'Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med.2, 689–692 (1996). CASPubMed Google Scholar
Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med.1, 149–153 (1995). CASPubMed Google Scholar
Hansma, A. H. et al. Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer. Ann. Oncol.16, 1695–1701 (2005). CASPubMed Google Scholar
Twombly, R. First clinical trials of endostatin yield lukewarm results. J. Natl Cancer Inst.94, 1520–1521 (2002). PubMed Google Scholar
Soff, G. A. et al. In vivo generation of angiostatin isoforms by administration of a plasminogen activator and a free sulfhydryl donor: a phase I study of an angiostatic cocktail of tissue plasminogen activator and mesna. Clin. Cancer Res.11, 6218–6225 (2005). CASPubMed Google Scholar
Thomas, J. P. et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol.21, 223–231 (2003). CASPubMed Google Scholar
Davis, D. W. et al. Quantitative analysis of biomarkers defines an optimal biological dose for recombinant human endostatin in primary human tumors. Clin. Cancer Res.10, 33–42 (2004). CASPubMed Google Scholar
Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res.66, 3351–3354 (2006). CASPubMed Google Scholar
Thompson, J., Stewart, C. F. & Houghton, P. J. Animal models for studying the action of topoisomerase I targeted drugs. Biochim. Biophys. Acta1400, 301–319 (1998). CASPubMed Google Scholar
Peterson, J. K. & Houghton, P. J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer40, 837–844 (2004). CASPubMed Google Scholar
Okami, K. et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res.58, 509–511 (1998). CASPubMed Google Scholar
Meyer, W. H. et al. Development and characterization of pediatric osteosarcoma xenografts. Cancer Res.50, 2781–2785 (1990). CASPubMed Google Scholar
Furman, W. L. et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J. Clin. Oncol.17, 1815–1824 (1999). CASPubMed Google Scholar
Sun, B., Chen, M., Hawks, C. L., Pereira-Smith, O. M. & Hornsby, P. J. The minimal set of genetic alterations required for conversion of primary human fibroblasts to cancer cells in the subrenal capsule assay. Neoplasia7, 585–593 (2005). CASPubMedPubMed Central Google Scholar
Sun, B., Chen, M., Hawks, C., Hornsby, P. J. & Wang, X. Tumorigenic study on hepatocytes coexpressing SV40 with Ras. Mol. Carcinog.45, 213–219 (2006). CASPubMed Google Scholar
Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf. Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1, 269–277 (2002). CASPubMed Google Scholar
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117, 927–939 (2004). CAS Google Scholar
Tassone, P. et al. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin. Cancer Res.11, 4251–4258 (2005). CASPubMed Google Scholar
Mitsiades, C. S. et al. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res.63, 6689–6696 (2003). CASPubMed Google Scholar
Bardeesy, N. et al. Both p16Ink4a and the p19Arf–p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA103, 5947–5952 (2006). CASPubMed Google Scholar
Sharpless, N. E., Kannan, K., Xu, J., Bosenberg, M. W. & Chin, L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene22, 5055–5059 (2003). CASPubMed Google Scholar
Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev.11, 2822–2834 (1997). CASPubMedPubMed Central Google Scholar
Bardeesy, N. et al. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell. Biol.21, 2144–2153 (2001). CASPubMedPubMed Central Google Scholar
Castresana, J. S. et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int. J. Cancer55, 562–565 (1993). CASPubMed Google Scholar
Albino, A. P. et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res.4, 35–45 (1994). CASPubMed Google Scholar
Lubbe, J., Reichel, M., Burg, G. & Kleihues, P. Absence of p53 gene mutations in cutaneous melanoma. J. Invest. Dermatol.102, 819–821 (1994). CASPubMed Google Scholar
Rhim, K. J. et al. Aberrant expression of p53 gene product in malignant melanoma. J. Korean Med. Sci.9, 376–381 (1994). CASPubMedPubMed Central Google Scholar
Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science264, 436–440 (1994). CASPubMed Google Scholar
Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nature Genet.8, 15–21 (1994). CASPubMed Google Scholar
Koh, J., Enders, G. H., Dynlacht, B. D. & Harlow, E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature375, 506–510 (1995). CASPubMed Google Scholar
Flores, J. F. et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res.56, 5023–5032 (1996). CASPubMed Google Scholar
Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer2, 11–18 (2002). CAS Google Scholar
Graves, E. E., Weissleder, R. & Ntziachristos, V. Fluorescence molecular imaging of small animal tumor models. Curr. Mol. Med.4, 419–430 (2004). CASPubMed Google Scholar
Sotillo, R. et al. Cooperation between Cdk4 and p27kip1 in tumor development: a preclinical model to evaluate cell cycle inhibitors with therapeutic activity. Cancer Res.65, 3846–3852 (2005). CASPubMed Google Scholar
Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell38, 627–637 (1984). CASPubMed Google Scholar
Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell48, 1023–1034 (1987). CASPubMed Google Scholar
Brinster, R. L. et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell37, 367–379 (1984). CASPubMedPubMed Central Google Scholar
Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature315, 115–122 (1985). CASPubMed Google Scholar
Adams, J. M. & Cory, S. Transgenic models of tumor development. Science254, 1161–1167 (1991). CASPubMed Google Scholar
Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature359, 295–300 (1992). CASPubMed Google Scholar
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol.4, 1–7 (1994). CASPubMed Google Scholar
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992). CASPubMed Google Scholar
Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell108, 135–144 (2002). CASPubMed Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature400, 468–472 (1999). CASPubMed Google Scholar
Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell4, 199–207 (1999). References 62 and 63 are classic papers that articulate and prove the concept of the importance of oncogenes, such asMYCandRAS, in tumour maintenance as opposed to tumour progression. Since this research it has become well recognized that establishing the role of a particular gene in tumour maintenance is a crucial step in target validation. CASPubMed Google Scholar
D'Cruz, C. M. et al. _c_-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med.7, 235–239 (2001). CASPubMed Google Scholar
Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev.20, 1496–1510 (2006). CASPubMedPubMed Central Google Scholar
Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev.15, 3249–3262 (2001). CASPubMedPubMed Central Google Scholar
Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell9, 485–495 (2006). CASPubMed Google Scholar
Boxer, R. B., Jang, J. W., Sintasath, L. & Chodosh, L. A. Lack of sustained regression of _c_-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell6, 577–586 (2004). CASPubMed Google Scholar
Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431, 1112–1117 (2004). CASPubMed Google Scholar
Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol.13, 1775–1785 (2003). CASPubMed Google Scholar
Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet.35, 25–31 (2003). CASPubMed Google Scholar
Martin, A. et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell7, 591–598 (2005). CASPubMed Google Scholar
Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2–cyclin E complexes regulate the G1/S phase transition. Nature Cell Biol.7, 831–836 (2005). CASPubMed Google Scholar
Yu, Q. et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell9, 23–32 (2006). CASPubMed Google Scholar
Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P. & Hinds, P. W. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell9, 13–22 (2006). CASPubMed Google Scholar
Toogood, P. L. et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem.48, 2388–2406 (2005). CASPubMed Google Scholar
Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell74, 957–967 (1993). One of the first GEMM studies to have major implications for the development of human chemotherapeutics. This work showed that the response to cytotoxics in certain malignant cells requires p53 function, establishing a key mechanism of chemotherapy resistance. CASPubMed Google Scholar
Omer, C. A. et al. Mouse mammary tumor virus-Ki-_ras_B transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res.60, 2680–2688 (2000). An important early GEMM study showing that FTI efficacy does not correlate with k-Ras mutation. The importance of this work was not fully appreciated until after a large number of human clinical trials were completed in which FTIs failed to demonstrate activity in tumours harbouring mutant k-RAS. CASPubMed Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). CASPubMedPubMed Central Google Scholar
Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose 'chemo-switch' regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol.23, 939–952 (2005). CASPubMed Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006). CASPubMed Google Scholar
Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature428, 332–337 (2004). CASPubMed Google Scholar
Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science284, 808–812 (1999). CASPubMed Google Scholar
Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell8, 299–309 (2005). A clever study showing how GEMMs can be used to tackle a difficult problem in drug discovery: how to combine and sequence novel anticancer agents. CASPubMed Google Scholar
Zhang, Z. et al. Farnesyltransferase inhibitors are potent lung cancer chemopreventive agents in A/J mice with a dominant-negative p53 and/or heterozygous deletion of Ink4a/Arf. Oncogene22, 6257–6265 (2003). CASPubMed Google Scholar
Boolbol, S. K. et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res.56, 2556–2560 (1996). CASPubMed Google Scholar
Jacoby, R. F., Seibert, K., Cole, C. E., Kelloff, G. & Lubet, R. A. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res.60, 5040–5044 (2000). CASPubMed Google Scholar
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995). CASPubMed Google Scholar
McCabe, M. T. et al. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res.66, 385–392 (2006). CASPubMed Google Scholar
Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med.2, e73 (2005). PubMedPubMed Central Google Scholar
Shah, N. P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell2, 117–125 (2002). CASPubMed Google Scholar
Roumiantsev, S. et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc. Natl Acad. Sci. USA99, 10700–10705 (2002). CASPubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science293, 876–880 (2001). CASPubMed Google Scholar
Maggi, A. & Ciana, P. Reporter mice and drug discovery and development. Nature Rev. Drug Discov.4, 249–255 (2005). CAS Google Scholar
Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Med.8, 459–465 (2002). An excellent example of how a modern, tissue-specific GEMM can be used to understand unexpected toxicity of a novel agent (in this case, a HER2/neuantibody). CASPubMed Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). CASPubMed Google Scholar
Blaug, S., Chien, C. & Shuster, M. J. Managing innovation: university–industry partnerships and the licensing of the Harvard mouse. Nature Biotechnol.22, 761–764 (2004). CAS Google Scholar
Marshall, E. Intellectual property. DuPont ups ante on use of Harvard's OncoMouse. Science296, 1212 (2002). CASPubMed Google Scholar
Maebius, S. B. & Wegner, H. C. Merck V. Integra: the impact of a broader 'safe harbor' exemption on nanobiotechnology. Nanotechnol. Law Business2, 1–6 (2005). Google Scholar
Nickerson, C. Canada court blocks Harvard bid to patent research mouse. Boston Globe(Boston) A20 6 December (2002). Google Scholar
Check, E. Canada stops Harvard's oncomouse in its tracks. Nature420, 593 (2002). CASPubMed Google Scholar
Jaffe, S. Ongoing battle over transgenic mice. The Scientist18, 46 (2004). Google Scholar
Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science269, 230–234 (1995). CASPubMed Google Scholar
Tsutsui, T. et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol.19, 7011–7019 (1999). CASPubMedPubMed Central Google Scholar
Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet.22, 44–52 (1999). CASPubMed Google Scholar
Little, C. C. & Cloudman, A. M. The occurrence of a dominant spotting mutation in the house mouse. Proc. Natl Acad. Sci. USA23, 535–537 (1937). CASPubMed Google Scholar