Vitamin D, disease and therapeutic opportunities (original) (raw)

References

  1. Reed, C. I., Struck, H. C. & Steck, I. E. (eds) Vitamin D: Chemistry, Physiology, Pharmacology Pathology, Experimental and Clinical Investigations 1–389 (The University of Chicago Press, Chicago, 1939).
    Google Scholar
  2. British Pediatric Association, Committee on Hypercalcaemia. Hypercalcemia in infants and vitamin D. BMJ 2, 149 (1956).
  3. DeLuca, H. F. in Vitamin D 2nd edn (eds Feldman, D., Glorieux, F. H. & Pike, J. W.) 3–11 (Academic Press, San Diego, 2005).
    Book Google Scholar
  4. Jones, G., Strugnell, S. A. & DeLuca, H. F. Current understanding of the molecular actions of vitamin D. Physiol. Rev. 78, 1193–1231 (1998). This is a critical and comprehensive review that provides an accurate description of vitamin D discoveries in the twentieth century.
    Article CAS PubMed Google Scholar
  5. Haussler, M. R. & McCain, T. A. Basic and clinical concepts related to vitamin D metabolism and action. N. Engl. J. Med. 297, 974–983; 1041–1050 (1977).
    Article CAS PubMed Google Scholar
  6. Christakos, S et al. Vitamin D. Molecular mechanism of action. Ann. NY Acad. Sci. 1116, 340–348 (2007).
    Article CAS PubMed Google Scholar
  7. Demay, M. B. Mechanism of vitamin D receptor action. Ann. NY Acad. Sci. 1068, 204–213 (2006).
    Article CAS PubMed Google Scholar
  8. Velluz, L. & Amiard, G. Chimie organique-nourveau précurseur de la vitamin D3 . Compt. Rend. 228, 1037–1038 (1949) (in French).
    CAS Google Scholar
  9. Cheng, J. B., Motola, D. L., Mangelsdorf, D. J. & Russell, D. W. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxylase. J. Biol. Chem. 278, 38084–38093 (2003).
    Article CAS PubMed Google Scholar
  10. Brunette, M. G., Chan, M., Ferriere, C. & Roberts, K. K. Site of 1,25-dihydroxyvitamin D3 synthesis in the kidney. Nature 276, 287–289 (1978).
    Article CAS PubMed Google Scholar
  11. DeLuca, H. F. Vitamin D: the vitamin and the hormone. Fed. Proc. 33, 2211–2219 (1974).
    CAS PubMed Google Scholar
  12. Aubin, J. E. & Bonnelye, E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporosis Int. 11, 905–913 (2000).
    Article CAS Google Scholar
  13. Plum, L. A. & DeLuca, H. F. The functional metabolism and molecular biology of vitamin D action. Clin. Rev. Bone Miner. Metab. 7, 20–41 (2009).
    Article CAS Google Scholar
  14. Fukumoto, S. Physiological regulation and disorders of phosphate metabolism — pivotal role of fibroblast growth factor 23. Inter. Med. 47, 337–343 (2008).
    Article Google Scholar
  15. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  16. Omdahl, J. L., Morris, H. A. & May, B. K. Hydroxylase enzymes of the vitamin D pathway: expression, function and regulation. Ann. Rev. Nutr. 22, 139–166 (2002).
    Article CAS Google Scholar
  17. Onisko, B. L., Esvelt, R. P., Schnoes, H. K. & DeLuca, H. F. Metabolites of 1α,25-dihydroxyvitamin D3 in rat bile. Biochemistry 19, 4124–4130 (1980).
    Article CAS PubMed Google Scholar
  18. Norman, A. W. in Vitamin D 2nd edn (Feldman, D., Pike, J. W. & Glorieux, F. H. eds) 381–411 (Elsevier, San Diego, 2005).
    Book Google Scholar
  19. Brumbaugh, P. F. & Haussler, M. R. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 16, 353–362 (1975). This is the first solid evidence for the vitamin D receptor.
    Article CAS PubMed Google Scholar
  20. Kream, B. E., Reynolds, R. D., Knutson, J. C. Eisman, J. A. & DeLuca, H. F. Intestinal cytosol binders of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Arch. Biochem. Biophys. 176, 779–787 (1976).
    Article CAS PubMed Google Scholar
  21. Baker, A. R. et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl Acad. Sci. USA 85, 3294–3298 (1988).
    Article CAS Google Scholar
  22. Burmester, J. K., Maeda, N. & DeLuca, H. F. Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. Proc. Natl Acad. Sci. USA 85, 1005–1009 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  23. Takeda, E., Yamamoto, H., Taketani, Y. & Miyamoto, K. Vitamin D-dependent rickets type I and type II. Acta Paediatr. Jpn. 39, 508–513 (1997).
    Article CAS PubMed Google Scholar
  24. Balsan, S. et al. Rickets and alopecia with resistance to 1,25-dihydroxyvitamin D: two different clinical courses with two different cellular defects. J. Clin. Endocrinol. Metab. 57, 803–811 (1983). The first description of different mutants of the vitamin D receptor that result in differential responses to 1,25-(OH) 2 D 3.
    Article CAS PubMed Google Scholar
  25. Lieberman, U. A., Eil, C. & Marx, S. J. Clinical features of hereditary resistance to 1,25-dihydroxyvitamin D (hereditary hypocalcemic vitamin D resistant ricket type II). Adv. Exp. Med. Biol. 196, 391–406 (1986).
    Article Google Scholar
  26. Bouillon, R. et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  27. Vanhooke, J. L. et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc. Natl Acad. Sci. USA 103, 75–80 (2006).
    Article CAS PubMed Google Scholar
  28. Steenbock, H. & Herting, D. C. Vitamin D and growth. J. Nutr. 57, 449–468 (1955).
    Article CAS PubMed Google Scholar
  29. Horst, R. L., Goff, J. P. & Reinhardt, T. A. Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor. Endocrinology 126, 1053–1057 (1990).
    Article CAS PubMed Google Scholar
  30. Adami, S. et al. Insulin-like growth factor 1 is associated with bone formation markers, PTH and bone mineral density in healthy premenopausal women. Bone 46, 244–247 (2010).
    Article CAS PubMed Google Scholar
  31. Gallagher. et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. Effect of age and dietary calcium. J. Clin. Invest. 64, 719–726 (1979).
    Article Google Scholar
  32. Slovik, D. M., Adams, J. S., Neer, R. M., Holick, M. F. & Potts, Jr J. T. Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N. Engl. J. Med. 305, 372–374 (1981).
    Article CAS PubMed Google Scholar
  33. Chen, C., Noland, K. A. & Kalu, D. N. Modulation of intestinal vitamin D receptor by ovariectomy, estrogen and growth hormone. Mech. Ageing Dev. 99, 109–122 (1997).
    Article CAS PubMed Google Scholar
  34. Xue, Y., Karaplis, A. C., Hendy, G. N., Goltzman, D. & Miao, D. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1α-hydroxylase and parathyroid hormone null alleles. Endocrinology 147, 4801–4810 (2006). The first clear demonstration of anabolic bone activity of 1,25-(OH) 2 D 3.
    Article CAS PubMed Google Scholar
  35. Shevde, N. K. et al. A potent analog of 1α,25-dihydroxyvitamin D3 selectively induces bone formation. Proc. Natl Acad. Sci. USA 99, 13487–13491 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  36. Ke, H. Z. et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J. Bone Miner. Res. 20, 1742–1755 (2005).
    Article CAS PubMed Google Scholar
  37. Plum, L. A. et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporosis Int. 17, 704–715 (2006).
    Article CAS Google Scholar
  38. DeLuca, H. F et al. The vitamin D analog 2MD increases bone turnover but not BMD in postmenopausal women with osteopenia: results of a 1-year, phase 2, double-blind, placebo-controlled, randomized clinical trial. J. Bone Min. Res. 1 Oct 2010 (doi:10.1002/jbmr.256).
  39. Kubodera, N. D-hormone derivatives for the treatment of osteoporosis: from alfacalcidol to eldecalcitol. Mini Rev. Med. Chem. 9, 1416–1422 (2009).
    Article CAS PubMed Google Scholar
  40. Nishii, Y. Active vitamin D and its analogs as drugs for the treatment of osteoporosis: advantages and problems. J. Bone Miner. Metab. 20, 57–65 (2002).
    Article CAS PubMed Google Scholar
  41. Tilyard, M. W., Spears, G. F. S., Thomson, J. & Dovey, S. Treatment of postmenopausal osteoporosis with calcitriol or calcium. N. Engl. J. Med. 326, 357–362 (1992). An important clinical study that shows that 1,25-(OH) 2 D 3 reduces the fracture rate in postmenopausal women.
    Article CAS PubMed Google Scholar
  42. Matsumoto, T. & Kubodera, N. ED-71, a new active vitamin D3, increases bone mineral density regardless of serum 25(OH)D levels in osteoporotic subjects. J. Steroid Biochem. Mol. Biol. 103, 584–586 (2007).
    Article CAS PubMed Google Scholar
  43. Thacher, T. D., Obadofin, M. O., O'Brien, K. O. & Abrams, S. A. The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in Nigerian children with rickets. J. Clin. Endocrinol. Metab. 94, 3314–3321 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  44. Levine, B. S., Kleeman, C. R. & Felsenfeld, A. J. The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport. Clin. J. Am. Soc. Nephrol. 4, 1866–1877 (2009).
    Article CAS PubMed Google Scholar
  45. de Menezes Filho, H., de Castro, L. C. G. & Damiani, D. Original article. Hypophosphatemic rickets and osteomalacia. Arq. Bras. Endocrinol. Metab. 50/4, 802–813 (2006).
    Article Google Scholar
  46. Martin, K. J. et al. Diagnosis, assessment, and treatment of bone turnover abnormalities in renal osteodystrophy. Am. J. Kidney Dis. 43, 558–565 (2004).
    Article PubMed Google Scholar
  47. DeLuca, H. F. The biochemical basis of renal osteodystrophy and post-menopausal osteoporosis: a view from the vitamin D system. Curr. Med. Res. Opin. 7, 279–293 (1981).
    Article CAS PubMed Google Scholar
  48. Stumpf, W. E., Sar, M., Reid, F. A., Tanaka, Y. & DeLuca, H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science 206, 1188–1190 (1979). The first clear demonstration of nuclear localization of 1,25-(OH) 2 D 3 in target tissues. It also shows that vitamin D acts beyond the intestine, kidney and bone.
    Article CAS PubMed Google Scholar
  49. Haussler, P. F., Hughes, M. R. & Haussler, M. R. Cytoplasmic and nuclear binding components for 1α,25-dihydroxyvitamin D3 in chick parathyroid glands. Proc. Natl Acad. Sci. USA 72, 4871–4875 (1975).
    Article PubMed PubMed Central Google Scholar
  50. Silver, J., Naveh-Many, T., Mayer, H., Schmeizer, H. J. & Popvtzer, M. M. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J. Clin. Invest. 78, 1296–1301 (1986). This paper demonstrates the first non-calcaemic action of 1,25-(OH) 2 D 3.
    Article CAS PubMed PubMed Central Google Scholar
  51. Brown, A. J. & Slatopolsky, E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nature Clin. Pract. Endocrinol. Metab. 3, 134–144 (2007).
    Article CAS Google Scholar
  52. Brown, A. J., Finch, J. & Slatopolsky, E. Differential effects of 19-nor-1,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on intestinal calcium and phosphate transport. J. Lab. Clin. Med. 139, 279–284 (2002).
    Article CAS PubMed Google Scholar
  53. Sjoden, G., Smith, C., Lindgren, U. & DeLuca, H. F. 1α-Hydroxyvitamin D2 is less toxic than 1α-hydroxyvitamin D3 in the rat. Proc. Soc. Exp. Biol. Med. 178, 432–436 (1985).
    Article CAS PubMed Google Scholar
  54. Brown, A. J. & Coyne, D. W. Vitamin D analogs: new therapeutic agents for secondary hyperparathyroidism. Treat Endocrinol. 1, 313–327 (2002).
    Article CAS PubMed Google Scholar
  55. Doorenbos, C. R. C., van den Born, J., Navis, G. & de Borst, M. H. Possible renoprotection by vitamin D in chronic renal disease: beyond mineral metabolism. Nature Rev. Nephrol. 5, 691–700 (2009).
    Article CAS Google Scholar
  56. Thadhani, R. Is calcitriol life-protective for patients with chronic kidney disease? J. Am. Soc. Nephrol. 20, 2285–2290 (2009). An important study of the importance of 1,25-(OH) 2 D 3 and analogue therapy for patients with renal failure.
    Article CAS PubMed Google Scholar
  57. Fishbane, S. et al. Oral paricalcitrol in the treatment of patients with CKD and proteinuria: a randomized trial. Am. J. Kidney Dis. 54, 647–652 (2009).
    Article CAS PubMed Google Scholar
  58. Szeto. et al. Oral calcitriol for the treatment of persistent proteinuria in immunoglobulin A nephropathy: an uncontrolled trial. Am. J. Kidney Dis. 52, 724–731 (2008).
    Article CAS Google Scholar
  59. Alborzi, P. et al. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension 52, 249–255 (2008).
    Article CAS PubMed Google Scholar
  60. Mizobuchi, M., Towler, D. & Slatopolsky, E. Vascular calcification: the killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 20, 1453–1464 (2009).
    Article CAS PubMed Google Scholar
  61. Mizobuchi, M. et al. Myocardial effects of VDR activators in renal failure. J. Steroid Biochem. Mol. Biol. 121, 188–192 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  62. Zhou, C. et al. Calcium-independent and 1,25(OH)2D3-dependent regulation of the rennin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int. 74, 170–179 (2008).
    Article CAS PubMed Google Scholar
  63. Giovannucci, E., Liu, Y., Hollis, B. W. & Rimm, E. B. 25-Hydroxyvitamin D and risk of myocardial infarction in men. Arch. Intern. Med. 168, 1174–1180 (2008). A paper that highlights the importance of vitamin D in cardiovascular health.
    Article CAS PubMed PubMed Central Google Scholar
  64. Buell, J. S. et al. 25-Hydroxyvitamin D, dementia, and cerebrovascular pathology in elders receiving home services. Neurology 74, 18–26 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  65. Feneis, J. F. & Arora, R. R. Role of vitamin D in blood pressure homeostasis. Am. J. Ther. 5 Mar 2010 (doi:10.1097/MJT.0b013e3181d16999).
  66. Krämer, C. et al. Characterization of the vitamin D endocrine system in human sebocytes in vitro. J. Steroid Biochem. Mol. Biol. 113, 9–16 (2009).
    Article CAS PubMed Google Scholar
  67. Reichrath, J., Muller, S. M., Kerber, A., Baum, H. P. & Bahmer, F. A. Biologic effects of topical calcipotriol (M903) treatment in psoriatic skin. J. Am. Acad. Dermatol. 36, 19–28 (1997).
    Article CAS PubMed Google Scholar
  68. Simpson, R. U. & DeLuca, H. F. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc. Natl Acad. Sci. USA 77, 5822–5826 (1980).
    Article CAS PubMed PubMed Central Google Scholar
  69. Hosomi, J., Hosoi, J., Abe, E., Suda, T. & Kuroki, T. Regulation of terminal differentiation of cultured mouse epidermal cells by 1α,25-dihydroxyvitamin D3 . Endocrinology 113, 1950–1957 (1983).
    Article CAS PubMed Google Scholar
  70. Abe, E. et al. Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3 . Proc. Natl Acad. Sci. USA 78, 4990–4994 (1981). A classical paper that indicates the possible anticancer and differentiative activity of 1,25-(OH) 2 D 3.
    Article CAS PubMed PubMed Central Google Scholar
  71. Holick, M. F. 1,25-Dihydroxyvitamin D3 and the skin: a unique application for the treatment of psoriasis. Proc. Soc. Exp. Biol. Med. 191, 246–257 (1989).
    Article CAS PubMed Google Scholar
  72. Kragballe, K. Calcipotriol: a new drug for topical psoriasis treatment. Pharmacol. Toxicol. 77, 242–246 (1995).
    Article Google Scholar
  73. Barker, J. N. W. N., Ashton, R. E., Marks, R., Harris, R. I. & Berth-Jones, J. Topical maxacalcitrol for the treatment of psoriasis vulgaris: a placebo-controlled, double-blind, dose-finding study with active comparator. Br. J. Dermatol. 141, 274–278 (1999).
    Article CAS PubMed Google Scholar
  74. Degitz, K. & Ochsendorf, F. Pharmacology of acne. Expert Opin. Pharmacother. 9, 955–971 (2008).
    Article CAS PubMed Google Scholar
  75. Nieves, N., Ahrens, J., Plum, L., DeLuca, H. & Clagett-Dame, M. Identification of a unique subset of 2-methylene-19-nor analogs of vitamin D with comedolytic activity in the rhino mouse. J. Invest. Dermatol. 130, 2359–2367 (2010).
    Article CAS PubMed Google Scholar
  76. Bhalla, A. K., Amento, E. P., Clemens, T. L., Holick, M. F. & Krane, S. M. Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J. Clin. Endocrinol. Metab. 57, 1308–1310 (1983).
    Article CAS PubMed Google Scholar
  77. Provvedini, D. M., Tsoukas, C. D., Deftos, L. J. & Manolagas, S. D. 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science 221, 1181–1183 (1983).
    Article CAS PubMed Google Scholar
  78. Veldman, C. M., Cantorna, M. T. & DeLuca, H. F. Expression of 1,25-dihydroxyvitain D3 receptor in the immune system. Arch. Biochem. Biophys. 374, 334–338 (2000).
    Article CAS PubMed Google Scholar
  79. Adorini, L. & Penna, G. Control of autoimmune diseases by the vitamin D endocrine system. Nature Clin. Pract. Rheumatol. 4, 404–412 (2008).
    Article CAS Google Scholar
  80. Yang, S., Smith, C. & DeLuca, H. F. 1α,25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim. Biophys. Acta 1158, 279–286 (1993).
    Article CAS PubMed Google Scholar
  81. Agranoff, B. W. & Goldberg, D. Diet and the geographical distribution of multiple sclerosis. Lancet 2, 1061–1066 (1974). This paper draws attention to ultraviolet irradiation and a reduction in the incidence of multiple sclerosis.
    Article CAS PubMed Google Scholar
  82. Lemire, J. M. & Archer, D. C. 1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Invest. 87, 1103–1107 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  83. Branisteanu, D. D. et al. Prevention of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine and 1α,25-(OH)2D3 . J. Neuroimmunol. 61, 151–160 (1995).
    Article CAS PubMed Google Scholar
  84. Cantorna, M. T., Hayes, C. E. & DeLuca, H. F. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 93, 7861–7864 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  85. Meehan, T. F., Vanhooke, J., Prahl, J. & DeLuca, H. F. Hypercalcemia produced by parathyroid hormone suppresses experimental autoimmune encephalomyelitis in female but not male mice. Arch. Biochem. Biophys. 442, 214–221 (2005).
    Article CAS PubMed Google Scholar
  86. Cantorna, M. T., Humpal-Winter, J. & DeLuca, H. F. Dietary calcium is a major factor in 1,25-dihydroxycholecalciferol suppression of experimental autoimmune encephalomyelitis in mice. J. Nutr. 129, 1966–1971 (1999).
    Article CAS PubMed Google Scholar
  87. Becklund, B. R., Severson, K. S., Vang, S. V. & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA 107, 6418–6423 (2010).
    Article PubMed PubMed Central Google Scholar
  88. Wingerchuk, D. M., Lesaux, J., Rice, A. P. A., Kremenchutzky, M. N. & Ebers, G. C. A pilot study of oral calcitriol (1,25-dihydroxyvitamin D3) for relapsing–remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76, 1294–1296 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  89. Fleming, J. O. et al. Vitamin D treatment of relapsing–remitting multiple sclerosis (RRMS): a MRI-based pilot study. Neurology 54, A338 (2000).
    Google Scholar
  90. Zella, J. B. & DeLuca, H. F. Vitamin D and autoimmune diabetes. J. Cell. Biochem. 88, 216–222 (2003).
    Article CAS PubMed Google Scholar
  91. Zella, J. B., McCary, L. C. & DeLuca, H. F. Oral administration of 1,25-dihydroxyvtiamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch. Biochem. Bioiphys. 417, 77–80 (2003).
    Article CAS Google Scholar
  92. Diabetes Epidemiology Research International Group. Geographic patterns of childhood insulin-dependent diabetes mellitus. Diabetes 37, 1113–1119 (1988).
  93. Harris, S. S. Symposium: vitamin D insufficiency: a significant risk factor in chronic diseases and potential disease-specific biomarkers of vitamin D sufficiency. J. Nutr. 135, 323–325 (2005).
    Article CAS PubMed Google Scholar
  94. Zhu, Y., Mahon, B. D., Froicu, M. & Cantorna, M. T. Calcium and 1α,25-dihydroxyvitamin D3 target the TNF-α pathway to suppress experimental inflammatory bowel disease. Eur. J. Immunol. 35, 217–224 (2005).
    Article CAS PubMed Google Scholar
  95. Laverny, G. et al. Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. Immunol. Lett. 131, 49–58 (2010).
    Article CAS PubMed Google Scholar
  96. Cantorna, M. T. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog. Biophys. Mol. Biol. 92, 60–64 (2006).
    Article CAS PubMed Google Scholar
  97. Kim, J. Effects of 1α,25-dihydroxyvitamin D3 on the MRL/MpJ-Fas/lpr model of systemic lupus erythematosus. Thesis, Univ. Wisconsin-Madison (2009).
  98. Cutolo, M. Editorial. Vitamin D and autoimmune rheumatic diseases. Rheumatology 48, 210–212 (2009).
    Article CAS PubMed Google Scholar
  99. Cantorna, M. T., Hayes, C. E. & DeLuca, H. F. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J. Nutr. 128, 68–72 (1998).
    Article CAS PubMed Google Scholar
  100. Andjelkovic, Z. et al. Disease modifying and immunomodulatory effects of high dose 1α(OH)D3 in rheumatoid arthritis patients. Clin. Exp. Rheumatol. 17, 453–456 (1999).
    CAS PubMed Google Scholar
  101. Abrams, W. R. & Bauer, W. Treatment of rheumatoid arthritis with large doses of vitamin D. J. Am. Med. Assoc. 11, 1632–1639 (1938).
    Article Google Scholar
  102. Wagner, L. C. Evaluation of arthritic cases treated with vitamin D. Ann. Int. Med. 19, 126–131 (1943).
    Article Google Scholar
  103. Cantorna, M. T., Zhu, Y., Froicu, M. & Wittke, A. Vitamin D status, 1,25-.dihydroxyvitamin D3, and the immune system. Am. J. Clin. Nutr. 80, 1717S–1720S (2004).
  104. Clark, S. A., Stumpf, W. E., Sar, M., DeLuca, H. F. & Tanaka, Y. Target cells for 1,25 dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 209, 515–520 (1980).
    Article CAS PubMed Google Scholar
  105. Colston, K., Colston, M. J. & Feldman, D. 1,25-Dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 108, 1083–1086 (1981).
    Article CAS PubMed Google Scholar
  106. Rheem, D. S., Baylink, D. J., Olafsson, S., Jackson, C. S. & Walter, M. H. Prevention of colorectal cancer with vitamin D. Scand. J. Gastroenterol. 45, 775–784 (2010).
    Article CAS PubMed Google Scholar
  107. Giovannucci, E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control 16, 83–95 (2005).
    Article PubMed Google Scholar
  108. Schwartz, G. G. Vitamin D and intervention trials in prostate cancer: from theory to therapy. Ann. Epidemiol. 19, 96–102 (2009).
    Article PubMed Google Scholar
  109. Bertone-Johnson, E. R. Vitamin D and breast cancer. Ann. Epidemiol. 19, 462–466 (2009).
    Article PubMed Google Scholar
  110. Grant, W. B. & Mohr, S. B. Ecological studies of ultraviolet B, vitamin D and cancer since 2000. Ann. Epidemiol. 19, 446–454 (2009).
    Article PubMed Google Scholar
  111. Garland, C. F. et al. The role of vitamin D in cancer prevention. Am. J. Public Health 96, 252–261 (2006). One of many reviews suggesting a role of vitamin D in cancer prevention.
    Article PubMed PubMed Central Google Scholar
  112. Masuda, S. & Jones, G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol. Cancer Ther. 5, 797–808 (2006).
    Article CAS PubMed Google Scholar
  113. Ordonez-Moran, P. et al. Vitamin D and cancer: an update of in vitro and in vivo data. Front. Biosci. 10, 2723–2749 (2005).
    Article CAS PubMed Google Scholar
  114. Zinser, G. M., Suckow, M. & Welsh, J. Vitamin D receptor (VDR) ablation alters carcinogen-induced tumorigenesis in mammary gland, epidermis and lymphoid tissues. J. Steroid Biochem. Mol. Biol. 97, 153–164 (2005).
    Article CAS PubMed Google Scholar
  115. Deeb, K. K., Trump, D. L. & Johnson, C. S. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nature Rev. Cancer 7, 684–700 (2007).
    Article CAS Google Scholar
  116. Galsky, M. D. & Vogelzang, N. J. Docetaxel-based combination therapy for castration-resistant prostate cancer. Ann. Oncol. 29 Mar 2010 (doi:10.1093/annonc/mdq050).
  117. Lappe, J. M., Travers-Gustafson, D., Davies, K. M., Recker, R. R. & Heaney, R. P. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am. J. Clin. Nutr. 85, 1586–1591 (2007).
    Article CAS PubMed Google Scholar
  118. Wactawski-Wende, J. et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med. 354, 684–696 (2006).
    Article CAS PubMed Google Scholar
  119. Chlebowski, R. T. et al. Calcium plus vitamin D supplementation and the risk of breast cancer. J. Natl Cancer Inst. 100, 1581–1591 (2007).
    Google Scholar
  120. Chiang, K.-C. & Chen, T. C. Vitamin D for the prevention and treatment of pancreatic cancer. World J. Gastroenterol. 15, 3349–3354 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  121. Bao, Y. et al. Predicted vitamin D status and pancreatic cancer risk in two prospective cohort studies. Br. J. Cancer 102, 1422–1427 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  122. Edlich, R. F. et al. Scientific documentation of the relationship of vitamin D deficiency and the development of cancer. J. Environ. Pathol. Toxicol. Oncol. 28, 133–141 (2009).
    Article CAS PubMed Google Scholar
  123. Erber, E., Maskarinec, G., Lim, U. & Kolonel, L. N. Dietary vitamin D and risk of non-Hodgkin lymphoma: the multiethnic cohort. Br. J. Nutr. 103, 581–584 (2010).
    Article CAS PubMed Google Scholar
  124. Evans, T. R. J. et al. A phase II trial of the vitamin D analogue seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br. J. Cancer 86, 680–685 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  125. Cunningham, D. et al. Alfacalcidol as a modulator of growth of low grade non-Hodgkin's lymphomas. BMJ 291, 1153–1155 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  126. Raina, V., Cunningham, D., Gilchrist, N. & Soukop, M. Alfacalcidol is a nontoxic, effective treatment of follicular small-cleaved cell lymphoma. Br. J. Cancer 63, 463–465 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  127. Dalhoff, K. et al. A phase II study of the vitamin D analogue seocalcitrol in patients with inoperable hepatocellular carcinoma. Br. J. Cancer 89, 252–257 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  128. Binkley, N. et al. Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J. Clin. Endocrinol. Metab. 89, 3152–3157 (2004).
    Article CAS PubMed Google Scholar
  129. Carter, G. D., Carter, R., Jones, J. & Berry, J. How accurate are assays for 25-hydroxyvitamin D? Data from the International Vitamin D External Quality Assessment Scheme. Clin. Chem. 51, 1071–1074 (2005).
    Article CAS Google Scholar
  130. de Jong, M. & Maina, T. Of mice and humans: are they the same? Implications in cancer translational research. J. Nucl. Med. 51, 501–504 (2010).
    Article PubMed Google Scholar
  131. Horváth, H. C. et al. The candidate oncogene CYP24A1: a potential biomarker for colorectal tumorigensis. J. Histochem. Cytochem. 58, 277–285 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  132. Wang, Y., Becklund, B. R. & DeLuca, H. F. Identification of a highly specific and versatile vitamin D receptor antibody. Arch. Biochem. Biophys. 494, 166–177 (2010).
    Article CAS PubMed Google Scholar
  133. Chesney, R. W. Vitamin D and the magic mountain: the anti-infectious role of the vitamin. J. Ped. 156, 698–703 (2010).
    Article Google Scholar
  134. Wang, T.-T. et al. Cutting edge: 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobialpeptide gene expression. J. Immunol. 173, 2909–2912 (2004).
    Article CAS PubMed Google Scholar
  135. Li-Ng, M. et al. A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol. Infect. 137, 1396–1401 (2009).
    Article CAS PubMed Google Scholar
  136. Talat, N., Perry, S., Parsonnet, J., Dawood, G. & Hussain, R. Vitamin D deficiency and tuberculosis progression. Emerg. Infect. Dis. 16, 853–855 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  137. Kramer, B. & Kanof, A. B. in The Vitamins Vol. 2 (eds Sebrell, W. H. Jr & Harris, R. S.) (Academic Press, New York, 1954).
    Google Scholar
  138. Narang, N. K., Gupta, R. C., Jain, M. K. Role of vitamin D in pulmonary tuberculosis. J. Assoc. Physicians India 32, 185–188 (1984).
    CAS PubMed Google Scholar
  139. Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 99, 582S–586S (2008).
    Article Google Scholar
  140. Vieth, R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am. J. Clin. Nutr. 69, 842–856 (1999).
    Article CAS PubMed Google Scholar
  141. Shephard, R. M. & DeLuca, H. F. Plasma concentrations of vitamin D3 and its metabolites in the rat as influenced by vitamin D3 or 25-hydroxyvitamin D3 intakes. Arch. Biochem. Biophys. 202, 43–53 (1980). A comprehensive paper showing vitamin D metabolite levels during vitamin D intoxication, suggesting that 1,25-(OH) 2 D 3 is not responsible.
    Article CAS PubMed Google Scholar
  142. DeLuca, H. F., Prahl, J. M. & Plum, L. A. 1,25-Dihydroxyvitamin D is not responsible for toxicity caused by vitamin D or 25-hydroxyvitamin, D. Arch. Biochem. Biophys. (in the press).
  143. Eisman, J. A. & DeLuca, H. F. Intestinal 1,25-dihydroxyvitamin D3 binding protein: specificity of binding. Steroids 30, 245–257 (1977).
    Article CAS PubMed Google Scholar
  144. Adams, J. S. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 2nd edn (ed. Favus, M. J.) 178–181 (Raven Press, New York, 1993)
    Google Scholar
  145. Barbour, G. L., Coburn, J. W., Slatopolsky, E., Norman, A. W. & Horst, R. L. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N. Engl. J. Med. 305, 440–443 (1981). This paper shows that hypercalcaemia of sarcoidosis is caused by an extrarenal production of 1,25-(OH) 2 D 3 . This shows for the first time clear evidence of extrarenal expression of the 1α-hydroxylase in disease.
    Article CAS PubMed Google Scholar
  146. Hewison, M. & Adams, J. S. in Vitamin D 2nd edn (eds Feldman, D., Pike, J. W. & Glorieux, F. H.) 1379–1400 (Elsevier, San Diego, CA, 2005).
    Book Google Scholar
  147. Kallas, M., Green, F., Hewison, M., White, C. & Kline, G. Rare causes of calcitriol mediated hypercalcemia: a case report and literature review. J. Clin. Endocrinol. Metab. 95, 3111–3117 (2010).
    Article CAS PubMed Google Scholar
  148. Shane, E. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 2nd edn (ed. Favus, M. J.) 153–155 (Raven Press, New York, 1993)
    Google Scholar
  149. Stewart, A. F. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 2nd edn (ed. Favus, M. J.) 169–173 (Raven Press, New York, 1993)
    Google Scholar
  150. Breslau, N. A., McGuire, J. L., Zerwekh, J. E. et al. Hypercalcemia associated with increased serum calcitriol levels in three patients with lymphoma. Ann. Intern. Med. 100, 1–7 (1984).
    Article CAS PubMed Google Scholar
  151. Tanaka, Y., DeLuca, H. F., Kobayashi, Y. & Ikekawa, N. 26,26,26,27,27,27-Hexafluoro-1,25-dihydroxyvitamin D3: a highly potent, long-lasting analog of 1,25-dihydroxyvitamin D3 . Arch. Biochem. Biophys. 229, 348–354 (1984).
    Article CAS PubMed Google Scholar
  152. Sinishtaj, S., Jeon, H. B., Dolan, P., Kensler, T. W. & Posner, G. H. Highly antiproliferative, low-calcemic, side-chain amide and hydroxamate analogs of the hormone 1α,25-dihydroxyvitamin D3 . Bioorg. Med. Chem. 14, 6341–6348 (2006).
    Article CAS PubMed Google Scholar
  153. Usera, A. R., Dolan, P., Kensler, T. W., Posner, G. H. Novel alkyl side chain sulfone 1α,25-dihydroxyvitamin D3 analogs: a comparison of in vitro antiproliferative activities and in vivo calcemic activities. Bioorg. Med. Chem. 17, 5627–5631 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  154. Ordentlich, P. & Heyman, R. A. Nonsteroidal analogs in Vitamin D 2nd edn (eds Feldman, D., Glorieux, F. H. & Pike, J. W.) 1558–1567 (Academic Press, San Diego, 2005).
    Google Scholar
  155. Plum, L. A. et al. Biologically active noncalcemic analogs of 1α,25-dihydroxyvitamin D with an abbreviated side chain containing no hydroxyl. Proc. Natl Acad. Sci. USA 101, 6900–6904 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  156. Tocchini-Valentini, G., Rochel, N. Wurtz, J. M., Mitschler, A. & Moras, D. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc. Natl Acad. Sci. USA 98, 5491–5496 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  157. Vanhooke, J. L., Benning, M. M., Bauer, C. B., Pike, J. W. & DeLuca, H. F. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry 43, 4101–4110 (2004).
    Article CAS PubMed Google Scholar
  158. Vanhooke, J. L., Tadi, B. P., Benning, M. M., Plum, L. A. & DeLuca, H. F. New analogs of 2-methylene-19-nor-(20_S_)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: valuation of biological activity and structural determination of VDR-bound conformations. Arch. Biochem. Biophys. 460, 161–165 (2007).
    Article CAS PubMed Google Scholar
  159. Bower, M. et al. Topical calcipotriol treatment in advanced breast cancer. Lancet 337, 701–702 (1991).
    Article CAS PubMed Google Scholar
  160. Gulliford, T. et al. A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br. J. Cancer 78, 6–13 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  161. Lathers, D. M. R., Clark, J. I., Achille, N. J. & Young, M. R. I. Phase IB study of 25-hydroxyvitamin D3 treatment to diminish suppressor cells in head and neck cancer patients. Human Immunol. 62, 1281–1293 (2001).
    Article Google Scholar
  162. Slapak, C. A., Desforges, J. F., Fogaren, T. & Miller, K. B. Treatment of acute myeloid leukemia in the elderly with low-dose cytarabine, hydroxyurea, and calcitriol. Am. J. Hematol. 41, 178–183 (1992).
    Article CAS PubMed Google Scholar
  163. Wieder, R. et al. Pharmacokinetics and safety of ILX23–7553, a non-calcemic-vitamin D3 analogue, in a phase I study of patients with advanced malignancies. Invest. New Drugs 21, 445–452 (2003).
    Article CAS PubMed Google Scholar
  164. Fakih, M. G. et al. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral gefitinib in patients with advanced solid tumors. Clin. Cancer Res. 13, 1216–1223 (2007).
    Article CAS PubMed Google Scholar
  165. Muindi, J. R. et al. A phase I and pharmacokinetics study of intravenous calcitriol in combination with oral dexamethasone and gefitinib in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 65, 22–30 (2009).
    Article CAS Google Scholar
  166. Osborn, J. L. et al. Phase II trial of oral 1,25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol. Oncol. 1, 195–198 (1995).
    Article CAS PubMed Google Scholar
  167. Gross, C., Stamey, T., Hancock, S. & Feldman, D. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J. Urol. 159, 2035–2039 (1998).
    Article CAS PubMed Google Scholar
  168. Liu, G. et al. Phase I trial of 1α-hydroxyvitamin D2 in patients with hormone refractory prostate cancer. Clin. Cancer Res. 8, 2820–2827 (2002).
    CAS PubMed Google Scholar
  169. Beer, T. M., Lemmon, D., Lowe, B. A. & Henner, W. D. High-dose weekly oral calcitriol in patients with a rising PA after prostatectomy or radiation for prostate carcinoma. Cancer 97, 1217–1224 (2003).
    Article CAS PubMed Google Scholar
  170. Liu, G. et al. Phase II study of 1α-hydroxyvitamin D2 in the treatment of advanced androgen-independent prostate cancer. Clin. Cancer Res. 9, 4077–4083 (2003).
    CAS PubMed Google Scholar
  171. Beer, T. M. et al. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J. Clin. Oncol. 21, 123–128 (2003).
    Article CAS PubMed Google Scholar
  172. Beer, T. M., Garzotto, M. & Katovic, N. M. High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am. J. Clin. Oncol. 27, 535–541 (2004).
    Article CAS PubMed Google Scholar
  173. Schwartz, G. G. et al. Phase I/II study of 19-nor-1α-25-dihydroxyvitamin D2 (paricalcitol) in advanced, androgen-insensitive prostate cancer. Clin. Cancer Res. 11, 8680–8685 (2005).
    Article CAS PubMed Google Scholar
  174. Tiffany, N. M., Ryan, C. W., Garzotto, M., Wersinger, E. M. & Beer, T. M. High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study. J. Urol. 174, 888–892 (2005).
    Article CAS PubMed Google Scholar
  175. Trump, D. L., Potter, D. M., Muindi, J., Brufsky, A. & Johnson, C. S. Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 106, 2136–2142 (2006).
    Article CAS PubMed Google Scholar
  176. Beer, T. M. et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo pus docetaxel in androgen-independent prostate cancer: a report from the ASCENT investigators. J. Clin. Oncol. 25, 669–674 (2007).
    Article CAS PubMed Google Scholar
  177. Wang, Y. & DeLuca, H. F. Is the vitamin D receptor found in muscle? Endocrinology (in the press).
  178. Matusiak, D., Murillo, G., Carroll, R. E., Mehta, R. G. & Benya R. V. Expression of vitamin D receptor and 25-hydroxyvitamin D3-1α-hydroxylase in normal and malignant human colon. Cancer Epidemiol. Biomarkers Prev. 14, 2370–2376 (2005).
    Article CAS PubMed Google Scholar

Download references