Vitamin D, disease and therapeutic opportunities (original) (raw)
References
Reed, C. I., Struck, H. C. & Steck, I. E. (eds) Vitamin D: Chemistry, Physiology, Pharmacology Pathology, Experimental and Clinical Investigations 1–389 (The University of Chicago Press, Chicago, 1939). Google Scholar
British Pediatric Association, Committee on Hypercalcaemia. Hypercalcemia in infants and vitamin D. BMJ2, 149 (1956).
DeLuca, H. F. in Vitamin D 2nd edn (eds Feldman, D., Glorieux, F. H. & Pike, J. W.) 3–11 (Academic Press, San Diego, 2005). Book Google Scholar
Jones, G., Strugnell, S. A. & DeLuca, H. F. Current understanding of the molecular actions of vitamin D. Physiol. Rev.78, 1193–1231 (1998). This is a critical and comprehensive review that provides an accurate description of vitamin D discoveries in the twentieth century. ArticleCASPubMed Google Scholar
Haussler, M. R. & McCain, T. A. Basic and clinical concepts related to vitamin D metabolism and action. N. Engl. J. Med.297, 974–983; 1041–1050 (1977). ArticleCASPubMed Google Scholar
Christakos, S et al. Vitamin D. Molecular mechanism of action. Ann. NY Acad. Sci.1116, 340–348 (2007). ArticleCASPubMed Google Scholar
Demay, M. B. Mechanism of vitamin D receptor action. Ann. NY Acad. Sci.1068, 204–213 (2006). ArticleCASPubMed Google Scholar
Velluz, L. & Amiard, G. Chimie organique-nourveau précurseur de la vitamin D3 . Compt. Rend.228, 1037–1038 (1949) (in French). CAS Google Scholar
Cheng, J. B., Motola, D. L., Mangelsdorf, D. J. & Russell, D. W. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxylase. J. Biol. Chem.278, 38084–38093 (2003). ArticleCASPubMed Google Scholar
Brunette, M. G., Chan, M., Ferriere, C. & Roberts, K. K. Site of 1,25-dihydroxyvitamin D3 synthesis in the kidney. Nature276, 287–289 (1978). ArticleCASPubMed Google Scholar
DeLuca, H. F. Vitamin D: the vitamin and the hormone. Fed. Proc.33, 2211–2219 (1974). CASPubMed Google Scholar
Aubin, J. E. & Bonnelye, E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporosis Int.11, 905–913 (2000). ArticleCAS Google Scholar
Plum, L. A. & DeLuca, H. F. The functional metabolism and molecular biology of vitamin D action. Clin. Rev. Bone Miner. Metab.7, 20–41 (2009). ArticleCAS Google Scholar
Fukumoto, S. Physiological regulation and disorders of phosphate metabolism — pivotal role of fibroblast growth factor 23. Inter. Med.47, 337–343 (2008). Article Google Scholar
Omdahl, J. L., Morris, H. A. & May, B. K. Hydroxylase enzymes of the vitamin D pathway: expression, function and regulation. Ann. Rev. Nutr.22, 139–166 (2002). ArticleCAS Google Scholar
Onisko, B. L., Esvelt, R. P., Schnoes, H. K. & DeLuca, H. F. Metabolites of 1α,25-dihydroxyvitamin D3 in rat bile. Biochemistry19, 4124–4130 (1980). ArticleCASPubMed Google Scholar
Norman, A. W. in Vitamin D 2nd edn (Feldman, D., Pike, J. W. & Glorieux, F. H. eds) 381–411 (Elsevier, San Diego, 2005). Book Google Scholar
Brumbaugh, P. F. & Haussler, M. R. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci.16, 353–362 (1975). This is the first solid evidence for the vitamin D receptor. ArticleCASPubMed Google Scholar
Kream, B. E., Reynolds, R. D., Knutson, J. C. Eisman, J. A. & DeLuca, H. F. Intestinal cytosol binders of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Arch. Biochem. Biophys.176, 779–787 (1976). ArticleCASPubMed Google Scholar
Baker, A. R. et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl Acad. Sci.USA85, 3294–3298 (1988). ArticleCAS Google Scholar
Burmester, J. K., Maeda, N. & DeLuca, H. F. Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. Proc. Natl Acad. Sci. USA85, 1005–1009 (1988). ArticleCASPubMedPubMed Central Google Scholar
Takeda, E., Yamamoto, H., Taketani, Y. & Miyamoto, K. Vitamin D-dependent rickets type I and type II. Acta Paediatr. Jpn.39, 508–513 (1997). ArticleCASPubMed Google Scholar
Balsan, S. et al. Rickets and alopecia with resistance to 1,25-dihydroxyvitamin D: two different clinical courses with two different cellular defects. J. Clin. Endocrinol. Metab.57, 803–811 (1983). The first description of different mutants of the vitamin D receptor that result in differential responses to 1,25-(OH)2D3. ArticleCASPubMed Google Scholar
Lieberman, U. A., Eil, C. & Marx, S. J. Clinical features of hereditary resistance to 1,25-dihydroxyvitamin D (hereditary hypocalcemic vitamin D resistant ricket type II). Adv. Exp. Med. Biol.196, 391–406 (1986). Article Google Scholar
Vanhooke, J. L. et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc. Natl Acad. Sci. USA103, 75–80 (2006). ArticleCASPubMed Google Scholar
Horst, R. L., Goff, J. P. & Reinhardt, T. A. Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor. Endocrinology126, 1053–1057 (1990). ArticleCASPubMed Google Scholar
Adami, S. et al. Insulin-like growth factor 1 is associated with bone formation markers, PTH and bone mineral density in healthy premenopausal women. Bone46, 244–247 (2010). ArticleCASPubMed Google Scholar
Gallagher. et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. Effect of age and dietary calcium. J. Clin. Invest.64, 719–726 (1979). Article Google Scholar
Slovik, D. M., Adams, J. S., Neer, R. M., Holick, M. F. & Potts, Jr J. T. Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N. Engl. J. Med.305, 372–374 (1981). ArticleCASPubMed Google Scholar
Chen, C., Noland, K. A. & Kalu, D. N. Modulation of intestinal vitamin D receptor by ovariectomy, estrogen and growth hormone. Mech. Ageing Dev.99, 109–122 (1997). ArticleCASPubMed Google Scholar
Xue, Y., Karaplis, A. C., Hendy, G. N., Goltzman, D. & Miao, D. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1α-hydroxylase and parathyroid hormone null alleles. Endocrinology147, 4801–4810 (2006). The first clear demonstration of anabolic bone activity of 1,25-(OH)2D3. ArticleCASPubMed Google Scholar
Shevde, N. K. et al. A potent analog of 1α,25-dihydroxyvitamin D3 selectively induces bone formation. Proc. Natl Acad. Sci. USA99, 13487–13491 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ke, H. Z. et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J. Bone Miner. Res.20, 1742–1755 (2005). ArticleCASPubMed Google Scholar
Plum, L. A. et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporosis Int.17, 704–715 (2006). ArticleCAS Google Scholar
DeLuca, H. F et al. The vitamin D analog 2MD increases bone turnover but not BMD in postmenopausal women with osteopenia: results of a 1-year, phase 2, double-blind, placebo-controlled, randomized clinical trial. J. Bone Min. Res. 1 Oct 2010 (doi:10.1002/jbmr.256).
Kubodera, N. D-hormone derivatives for the treatment of osteoporosis: from alfacalcidol to eldecalcitol. Mini Rev. Med. Chem.9, 1416–1422 (2009). ArticleCASPubMed Google Scholar
Nishii, Y. Active vitamin D and its analogs as drugs for the treatment of osteoporosis: advantages and problems. J. Bone Miner. Metab.20, 57–65 (2002). ArticleCASPubMed Google Scholar
Tilyard, M. W., Spears, G. F. S., Thomson, J. & Dovey, S. Treatment of postmenopausal osteoporosis with calcitriol or calcium. N. Engl. J. Med.326, 357–362 (1992). An important clinical study that shows that 1,25-(OH)2D3reduces the fracture rate in postmenopausal women. ArticleCASPubMed Google Scholar
Matsumoto, T. & Kubodera, N. ED-71, a new active vitamin D3, increases bone mineral density regardless of serum 25(OH)D levels in osteoporotic subjects. J. Steroid Biochem. Mol. Biol.103, 584–586 (2007). ArticleCASPubMed Google Scholar
Thacher, T. D., Obadofin, M. O., O'Brien, K. O. & Abrams, S. A. The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in Nigerian children with rickets. J. Clin. Endocrinol. Metab.94, 3314–3321 (2009). ArticleCASPubMedPubMed Central Google Scholar
Levine, B. S., Kleeman, C. R. & Felsenfeld, A. J. The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport. Clin. J. Am. Soc. Nephrol.4, 1866–1877 (2009). ArticleCASPubMed Google Scholar
de Menezes Filho, H., de Castro, L. C. G. & Damiani, D. Original article. Hypophosphatemic rickets and osteomalacia. Arq. Bras. Endocrinol. Metab.50/4, 802–813 (2006). Article Google Scholar
Martin, K. J. et al. Diagnosis, assessment, and treatment of bone turnover abnormalities in renal osteodystrophy. Am. J. Kidney Dis.43, 558–565 (2004). ArticlePubMed Google Scholar
DeLuca, H. F. The biochemical basis of renal osteodystrophy and post-menopausal osteoporosis: a view from the vitamin D system. Curr. Med. Res. Opin.7, 279–293 (1981). ArticleCASPubMed Google Scholar
Stumpf, W. E., Sar, M., Reid, F. A., Tanaka, Y. & DeLuca, H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science206, 1188–1190 (1979). The first clear demonstration of nuclear localization of 1,25-(OH)2D3in target tissues. It also shows that vitamin D acts beyond the intestine, kidney and bone. ArticleCASPubMed Google Scholar
Haussler, P. F., Hughes, M. R. & Haussler, M. R. Cytoplasmic and nuclear binding components for 1α,25-dihydroxyvitamin D3 in chick parathyroid glands. Proc. Natl Acad. Sci. USA72, 4871–4875 (1975). ArticlePubMedPubMed Central Google Scholar
Silver, J., Naveh-Many, T., Mayer, H., Schmeizer, H. J. & Popvtzer, M. M. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J. Clin. Invest.78, 1296–1301 (1986). This paper demonstrates the first non-calcaemic action of 1,25-(OH)2D3. ArticleCASPubMedPubMed Central Google Scholar
Brown, A. J. & Slatopolsky, E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nature Clin. Pract. Endocrinol. Metab.3, 134–144 (2007). ArticleCAS Google Scholar
Brown, A. J., Finch, J. & Slatopolsky, E. Differential effects of 19-nor-1,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on intestinal calcium and phosphate transport. J. Lab. Clin. Med.139, 279–284 (2002). ArticleCASPubMed Google Scholar
Sjoden, G., Smith, C., Lindgren, U. & DeLuca, H. F. 1α-Hydroxyvitamin D2 is less toxic than 1α-hydroxyvitamin D3 in the rat. Proc. Soc. Exp. Biol. Med.178, 432–436 (1985). ArticleCASPubMed Google Scholar
Brown, A. J. & Coyne, D. W. Vitamin D analogs: new therapeutic agents for secondary hyperparathyroidism. Treat Endocrinol.1, 313–327 (2002). ArticleCASPubMed Google Scholar
Doorenbos, C. R. C., van den Born, J., Navis, G. & de Borst, M. H. Possible renoprotection by vitamin D in chronic renal disease: beyond mineral metabolism. Nature Rev. Nephrol.5, 691–700 (2009). ArticleCAS Google Scholar
Thadhani, R. Is calcitriol life-protective for patients with chronic kidney disease? J. Am. Soc. Nephrol.20, 2285–2290 (2009). An important study of the importance of 1,25-(OH)2D3and analogue therapy for patients with renal failure. ArticleCASPubMed Google Scholar
Fishbane, S. et al. Oral paricalcitrol in the treatment of patients with CKD and proteinuria: a randomized trial. Am. J. Kidney Dis.54, 647–652 (2009). ArticleCASPubMed Google Scholar
Szeto. et al. Oral calcitriol for the treatment of persistent proteinuria in immunoglobulin A nephropathy: an uncontrolled trial. Am. J. Kidney Dis.52, 724–731 (2008). ArticleCAS Google Scholar
Alborzi, P. et al. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension52, 249–255 (2008). ArticleCASPubMed Google Scholar
Mizobuchi, M., Towler, D. & Slatopolsky, E. Vascular calcification: the killer of patients with chronic kidney disease. J. Am. Soc. Nephrol.20, 1453–1464 (2009). ArticleCASPubMed Google Scholar
Zhou, C. et al. Calcium-independent and 1,25(OH)2D3-dependent regulation of the rennin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int.74, 170–179 (2008). ArticleCASPubMed Google Scholar
Giovannucci, E., Liu, Y., Hollis, B. W. & Rimm, E. B. 25-Hydroxyvitamin D and risk of myocardial infarction in men. Arch. Intern. Med.168, 1174–1180 (2008). A paper that highlights the importance of vitamin D in cardiovascular health. ArticleCASPubMedPubMed Central Google Scholar
Buell, J. S. et al. 25-Hydroxyvitamin D, dementia, and cerebrovascular pathology in elders receiving home services. Neurology74, 18–26 (2010). ArticleCASPubMedPubMed Central Google Scholar
Feneis, J. F. & Arora, R. R. Role of vitamin D in blood pressure homeostasis. Am. J. Ther. 5 Mar 2010 (doi:10.1097/MJT.0b013e3181d16999).
Krämer, C. et al. Characterization of the vitamin D endocrine system in human sebocytes in vitro. J. Steroid Biochem. Mol. Biol.113, 9–16 (2009). ArticleCASPubMed Google Scholar
Reichrath, J., Muller, S. M., Kerber, A., Baum, H. P. & Bahmer, F. A. Biologic effects of topical calcipotriol (M903) treatment in psoriatic skin. J. Am. Acad. Dermatol.36, 19–28 (1997). ArticleCASPubMed Google Scholar
Simpson, R. U. & DeLuca, H. F. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc. Natl Acad. Sci. USA77, 5822–5826 (1980). ArticleCASPubMedPubMed Central Google Scholar
Hosomi, J., Hosoi, J., Abe, E., Suda, T. & Kuroki, T. Regulation of terminal differentiation of cultured mouse epidermal cells by 1α,25-dihydroxyvitamin D3 . Endocrinology113, 1950–1957 (1983). ArticleCASPubMed Google Scholar
Abe, E. et al. Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3 . Proc. Natl Acad. Sci. USA78, 4990–4994 (1981). A classical paper that indicates the possible anticancer and differentiative activity of 1,25-(OH)2D3. ArticleCASPubMedPubMed Central Google Scholar
Holick, M. F. 1,25-Dihydroxyvitamin D3 and the skin: a unique application for the treatment of psoriasis. Proc. Soc. Exp. Biol. Med.191, 246–257 (1989). ArticleCASPubMed Google Scholar
Kragballe, K. Calcipotriol: a new drug for topical psoriasis treatment. Pharmacol. Toxicol.77, 242–246 (1995). Article Google Scholar
Barker, J. N. W. N., Ashton, R. E., Marks, R., Harris, R. I. & Berth-Jones, J. Topical maxacalcitrol for the treatment of psoriasis vulgaris: a placebo-controlled, double-blind, dose-finding study with active comparator. Br. J. Dermatol.141, 274–278 (1999). ArticleCASPubMed Google Scholar
Degitz, K. & Ochsendorf, F. Pharmacology of acne. Expert Opin. Pharmacother.9, 955–971 (2008). ArticleCASPubMed Google Scholar
Nieves, N., Ahrens, J., Plum, L., DeLuca, H. & Clagett-Dame, M. Identification of a unique subset of 2-methylene-19-nor analogs of vitamin D with comedolytic activity in the rhino mouse. J. Invest. Dermatol.130, 2359–2367 (2010). ArticleCASPubMed Google Scholar
Bhalla, A. K., Amento, E. P., Clemens, T. L., Holick, M. F. & Krane, S. M. Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J. Clin. Endocrinol. Metab.57, 1308–1310 (1983). ArticleCASPubMed Google Scholar
Provvedini, D. M., Tsoukas, C. D., Deftos, L. J. & Manolagas, S. D. 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science221, 1181–1183 (1983). ArticleCASPubMed Google Scholar
Veldman, C. M., Cantorna, M. T. & DeLuca, H. F. Expression of 1,25-dihydroxyvitain D3 receptor in the immune system. Arch. Biochem. Biophys.374, 334–338 (2000). ArticleCASPubMed Google Scholar
Adorini, L. & Penna, G. Control of autoimmune diseases by the vitamin D endocrine system. Nature Clin. Pract. Rheumatol.4, 404–412 (2008). ArticleCAS Google Scholar
Yang, S., Smith, C. & DeLuca, H. F. 1α,25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim. Biophys. Acta1158, 279–286 (1993). ArticleCASPubMed Google Scholar
Agranoff, B. W. & Goldberg, D. Diet and the geographical distribution of multiple sclerosis. Lancet2, 1061–1066 (1974). This paper draws attention to ultraviolet irradiation and a reduction in the incidence of multiple sclerosis. ArticleCASPubMed Google Scholar
Lemire, J. M. & Archer, D. C. 1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Invest.87, 1103–1107 (1991). ArticleCASPubMedPubMed Central Google Scholar
Branisteanu, D. D. et al. Prevention of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine and 1α,25-(OH)2D3 . J. Neuroimmunol.61, 151–160 (1995). ArticleCASPubMed Google Scholar
Cantorna, M. T., Hayes, C. E. & DeLuca, H. F. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl Acad. Sci. USA93, 7861–7864 (1996). ArticleCASPubMedPubMed Central Google Scholar
Meehan, T. F., Vanhooke, J., Prahl, J. & DeLuca, H. F. Hypercalcemia produced by parathyroid hormone suppresses experimental autoimmune encephalomyelitis in female but not male mice. Arch. Biochem. Biophys.442, 214–221 (2005). ArticleCASPubMed Google Scholar
Cantorna, M. T., Humpal-Winter, J. & DeLuca, H. F. Dietary calcium is a major factor in 1,25-dihydroxycholecalciferol suppression of experimental autoimmune encephalomyelitis in mice. J. Nutr.129, 1966–1971 (1999). ArticleCASPubMed Google Scholar
Becklund, B. R., Severson, K. S., Vang, S. V. & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA107, 6418–6423 (2010). ArticlePubMedPubMed Central Google Scholar
Wingerchuk, D. M., Lesaux, J., Rice, A. P. A., Kremenchutzky, M. N. & Ebers, G. C. A pilot study of oral calcitriol (1,25-dihydroxyvitamin D3) for relapsing–remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry76, 1294–1296 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fleming, J. O. et al. Vitamin D treatment of relapsing–remitting multiple sclerosis (RRMS): a MRI-based pilot study. Neurology54, A338 (2000). Google Scholar
Zella, J. B. & DeLuca, H. F. Vitamin D and autoimmune diabetes. J. Cell. Biochem.88, 216–222 (2003). ArticleCASPubMed Google Scholar
Zella, J. B., McCary, L. C. & DeLuca, H. F. Oral administration of 1,25-dihydroxyvtiamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch. Biochem. Bioiphys.417, 77–80 (2003). ArticleCAS Google Scholar
Diabetes Epidemiology Research International Group. Geographic patterns of childhood insulin-dependent diabetes mellitus. Diabetes37, 1113–1119 (1988).
Harris, S. S. Symposium: vitamin D insufficiency: a significant risk factor in chronic diseases and potential disease-specific biomarkers of vitamin D sufficiency. J. Nutr.135, 323–325 (2005). ArticleCASPubMed Google Scholar
Zhu, Y., Mahon, B. D., Froicu, M. & Cantorna, M. T. Calcium and 1α,25-dihydroxyvitamin D3 target the TNF-α pathway to suppress experimental inflammatory bowel disease. Eur. J. Immunol.35, 217–224 (2005). ArticleCASPubMed Google Scholar
Laverny, G. et al. Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. Immunol. Lett.131, 49–58 (2010). ArticleCASPubMed Google Scholar
Cantorna, M. T. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog. Biophys. Mol. Biol.92, 60–64 (2006). ArticleCASPubMed Google Scholar
Kim, J. Effects of 1α,25-dihydroxyvitamin D3 on the MRL/MpJ-Fas/lpr model of systemic lupus erythematosus. Thesis, Univ. Wisconsin-Madison (2009).
Cutolo, M. Editorial. Vitamin D and autoimmune rheumatic diseases. Rheumatology48, 210–212 (2009). ArticleCASPubMed Google Scholar
Cantorna, M. T., Hayes, C. E. & DeLuca, H. F. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J. Nutr.128, 68–72 (1998). ArticleCASPubMed Google Scholar
Andjelkovic, Z. et al. Disease modifying and immunomodulatory effects of high dose 1α(OH)D3 in rheumatoid arthritis patients. Clin. Exp. Rheumatol.17, 453–456 (1999). CASPubMed Google Scholar
Abrams, W. R. & Bauer, W. Treatment of rheumatoid arthritis with large doses of vitamin D. J. Am. Med. Assoc.11, 1632–1639 (1938). Article Google Scholar
Wagner, L. C. Evaluation of arthritic cases treated with vitamin D. Ann. Int. Med.19, 126–131 (1943). Article Google Scholar
Cantorna, M. T., Zhu, Y., Froicu, M. & Wittke, A. Vitamin D status, 1,25-.dihydroxyvitamin D3, and the immune system. Am. J. Clin. Nutr.80, 1717S–1720S (2004).
Clark, S. A., Stumpf, W. E., Sar, M., DeLuca, H. F. & Tanaka, Y. Target cells for 1,25 dihydroxyvitamin D3 in the pancreas. Cell Tissue Res.209, 515–520 (1980). ArticleCASPubMed Google Scholar
Colston, K., Colston, M. J. & Feldman, D. 1,25-Dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology108, 1083–1086 (1981). ArticleCASPubMed Google Scholar
Rheem, D. S., Baylink, D. J., Olafsson, S., Jackson, C. S. & Walter, M. H. Prevention of colorectal cancer with vitamin D. Scand. J. Gastroenterol.45, 775–784 (2010). ArticleCASPubMed Google Scholar
Giovannucci, E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control16, 83–95 (2005). ArticlePubMed Google Scholar
Schwartz, G. G. Vitamin D and intervention trials in prostate cancer: from theory to therapy. Ann. Epidemiol.19, 96–102 (2009). ArticlePubMed Google Scholar
Bertone-Johnson, E. R. Vitamin D and breast cancer. Ann. Epidemiol.19, 462–466 (2009). ArticlePubMed Google Scholar
Grant, W. B. & Mohr, S. B. Ecological studies of ultraviolet B, vitamin D and cancer since 2000. Ann. Epidemiol.19, 446–454 (2009). ArticlePubMed Google Scholar
Garland, C. F. et al. The role of vitamin D in cancer prevention. Am. J. Public Health96, 252–261 (2006). One of many reviews suggesting a role of vitamin D in cancer prevention. ArticlePubMedPubMed Central Google Scholar
Masuda, S. & Jones, G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol. Cancer Ther.5, 797–808 (2006). ArticleCASPubMed Google Scholar
Ordonez-Moran, P. et al. Vitamin D and cancer: an update of in vitro and in vivo data. Front. Biosci.10, 2723–2749 (2005). ArticleCASPubMed Google Scholar
Zinser, G. M., Suckow, M. & Welsh, J. Vitamin D receptor (VDR) ablation alters carcinogen-induced tumorigenesis in mammary gland, epidermis and lymphoid tissues. J. Steroid Biochem. Mol. Biol.97, 153–164 (2005). ArticleCASPubMed Google Scholar
Deeb, K. K., Trump, D. L. & Johnson, C. S. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nature Rev. Cancer7, 684–700 (2007). ArticleCAS Google Scholar
Galsky, M. D. & Vogelzang, N. J. Docetaxel-based combination therapy for castration-resistant prostate cancer. Ann. Oncol. 29 Mar 2010 (doi:10.1093/annonc/mdq050).
Lappe, J. M., Travers-Gustafson, D., Davies, K. M., Recker, R. R. & Heaney, R. P. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am. J. Clin. Nutr.85, 1586–1591 (2007). ArticleCASPubMed Google Scholar
Wactawski-Wende, J. et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med.354, 684–696 (2006). ArticleCASPubMed Google Scholar
Chlebowski, R. T. et al. Calcium plus vitamin D supplementation and the risk of breast cancer. J. Natl CancerInst.100, 1581–1591 (2007). Google Scholar
Chiang, K.-C. & Chen, T. C. Vitamin D for the prevention and treatment of pancreatic cancer. World J. Gastroenterol.15, 3349–3354 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bao, Y. et al. Predicted vitamin D status and pancreatic cancer risk in two prospective cohort studies. Br. J. Cancer102, 1422–1427 (2010). ArticleCASPubMedPubMed Central Google Scholar
Edlich, R. F. et al. Scientific documentation of the relationship of vitamin D deficiency and the development of cancer. J. Environ. Pathol. Toxicol. Oncol.28, 133–141 (2009). ArticleCASPubMed Google Scholar
Erber, E., Maskarinec, G., Lim, U. & Kolonel, L. N. Dietary vitamin D and risk of non-Hodgkin lymphoma: the multiethnic cohort. Br. J. Nutr.103, 581–584 (2010). ArticleCASPubMed Google Scholar
Evans, T. R. J. et al. A phase II trial of the vitamin D analogue seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br. J. Cancer86, 680–685 (2002). ArticleCASPubMedPubMed Central Google Scholar
Raina, V., Cunningham, D., Gilchrist, N. & Soukop, M. Alfacalcidol is a nontoxic, effective treatment of follicular small-cleaved cell lymphoma. Br. J. Cancer63, 463–465 (1991). ArticleCASPubMedPubMed Central Google Scholar
Dalhoff, K. et al. A phase II study of the vitamin D analogue seocalcitrol in patients with inoperable hepatocellular carcinoma. Br. J. Cancer89, 252–257 (2003). ArticleCASPubMedPubMed Central Google Scholar
Binkley, N. et al. Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J. Clin. Endocrinol. Metab.89, 3152–3157 (2004). ArticleCASPubMed Google Scholar
Carter, G. D., Carter, R., Jones, J. & Berry, J. How accurate are assays for 25-hydroxyvitamin D? Data from the International Vitamin D External Quality Assessment Scheme. Clin. Chem.51, 1071–1074 (2005). ArticleCAS Google Scholar
de Jong, M. & Maina, T. Of mice and humans: are they the same? Implications in cancer translational research. J. Nucl. Med.51, 501–504 (2010). ArticlePubMed Google Scholar
Horváth, H. C. et al. The candidate oncogene CYP24A1: a potential biomarker for colorectal tumorigensis. J. Histochem. Cytochem.58, 277–285 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y., Becklund, B. R. & DeLuca, H. F. Identification of a highly specific and versatile vitamin D receptor antibody. Arch. Biochem. Biophys.494, 166–177 (2010). ArticleCASPubMed Google Scholar
Chesney, R. W. Vitamin D and the magic mountain: the anti-infectious role of the vitamin. J. Ped.156, 698–703 (2010). Article Google Scholar
Wang, T.-T. et al. Cutting edge: 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobialpeptide gene expression. J. Immunol.173, 2909–2912 (2004). ArticleCASPubMed Google Scholar
Li-Ng, M. et al. A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol. Infect.137, 1396–1401 (2009). ArticleCASPubMed Google Scholar
Talat, N., Perry, S., Parsonnet, J., Dawood, G. & Hussain, R. Vitamin D deficiency and tuberculosis progression. Emerg. Infect. Dis.16, 853–855 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kramer, B. & Kanof, A. B. in The Vitamins Vol. 2 (eds Sebrell, W. H. Jr & Harris, R. S.) (Academic Press, New York, 1954). Google Scholar
Narang, N. K., Gupta, R. C., Jain, M. K. Role of vitamin D in pulmonary tuberculosis. J. Assoc. Physicians India32, 185–188 (1984). CASPubMed Google Scholar
Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr.99, 582S–586S (2008). Article Google Scholar
Vieth, R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am. J. Clin. Nutr.69, 842–856 (1999). ArticleCASPubMed Google Scholar
Shephard, R. M. & DeLuca, H. F. Plasma concentrations of vitamin D3 and its metabolites in the rat as influenced by vitamin D3 or 25-hydroxyvitamin D3 intakes. Arch. Biochem. Biophys.202, 43–53 (1980). A comprehensive paper showing vitamin D metabolite levels during vitamin D intoxication, suggesting that 1,25-(OH)2D3is not responsible. ArticleCASPubMed Google Scholar
DeLuca, H. F., Prahl, J. M. & Plum, L. A. 1,25-Dihydroxyvitamin D is not responsible for toxicity caused by vitamin D or 25-hydroxyvitamin, D. Arch. Biochem. Biophys. (in the press).
Eisman, J. A. & DeLuca, H. F. Intestinal 1,25-dihydroxyvitamin D3 binding protein: specificity of binding. Steroids30, 245–257 (1977). ArticleCASPubMed Google Scholar
Adams, J. S. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 2nd edn (ed. Favus, M. J.) 178–181 (Raven Press, New York, 1993) Google Scholar
Barbour, G. L., Coburn, J. W., Slatopolsky, E., Norman, A. W. & Horst, R. L. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N. Engl. J. Med.305, 440–443 (1981). This paper shows that hypercalcaemia of sarcoidosis is caused by an extrarenal production of 1,25-(OH)2D3. This shows for the first time clear evidence of extrarenal expression of the 1α-hydroxylase in disease. ArticleCASPubMed Google Scholar
Hewison, M. & Adams, J. S. in Vitamin D 2nd edn (eds Feldman, D., Pike, J. W. & Glorieux, F. H.) 1379–1400 (Elsevier, San Diego, CA, 2005). Book Google Scholar
Kallas, M., Green, F., Hewison, M., White, C. & Kline, G. Rare causes of calcitriol mediated hypercalcemia: a case report and literature review. J. Clin. Endocrinol. Metab.95, 3111–3117 (2010). ArticleCASPubMed Google Scholar
Shane, E. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 2nd edn (ed. Favus, M. J.) 153–155 (Raven Press, New York, 1993) Google Scholar
Stewart, A. F. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism 2nd edn (ed. Favus, M. J.) 169–173 (Raven Press, New York, 1993) Google Scholar
Breslau, N. A., McGuire, J. L., Zerwekh, J. E. et al. Hypercalcemia associated with increased serum calcitriol levels in three patients with lymphoma. Ann. Intern. Med.100, 1–7 (1984). ArticleCASPubMed Google Scholar
Tanaka, Y., DeLuca, H. F., Kobayashi, Y. & Ikekawa, N. 26,26,26,27,27,27-Hexafluoro-1,25-dihydroxyvitamin D3: a highly potent, long-lasting analog of 1,25-dihydroxyvitamin D3 . Arch. Biochem. Biophys.229, 348–354 (1984). ArticleCASPubMed Google Scholar
Sinishtaj, S., Jeon, H. B., Dolan, P., Kensler, T. W. & Posner, G. H. Highly antiproliferative, low-calcemic, side-chain amide and hydroxamate analogs of the hormone 1α,25-dihydroxyvitamin D3 . Bioorg. Med. Chem.14, 6341–6348 (2006). ArticleCASPubMed Google Scholar
Usera, A. R., Dolan, P., Kensler, T. W., Posner, G. H. Novel alkyl side chain sulfone 1α,25-dihydroxyvitamin D3 analogs: a comparison of in vitro antiproliferative activities and in vivo calcemic activities. Bioorg. Med. Chem.17, 5627–5631 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ordentlich, P. & Heyman, R. A. Nonsteroidal analogs in Vitamin D 2nd edn (eds Feldman, D., Glorieux, F. H. & Pike, J. W.) 1558–1567 (Academic Press, San Diego, 2005). Google Scholar
Plum, L. A. et al. Biologically active noncalcemic analogs of 1α,25-dihydroxyvitamin D with an abbreviated side chain containing no hydroxyl. Proc. Natl Acad. Sci. USA101, 6900–6904 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tocchini-Valentini, G., Rochel, N. Wurtz, J. M., Mitschler, A. & Moras, D. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc. Natl Acad. Sci. USA98, 5491–5496 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vanhooke, J. L., Benning, M. M., Bauer, C. B., Pike, J. W. & DeLuca, H. F. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry43, 4101–4110 (2004). ArticleCASPubMed Google Scholar
Vanhooke, J. L., Tadi, B. P., Benning, M. M., Plum, L. A. & DeLuca, H. F. New analogs of 2-methylene-19-nor-(20_S_)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: valuation of biological activity and structural determination of VDR-bound conformations. Arch. Biochem. Biophys.460, 161–165 (2007). ArticleCASPubMed Google Scholar
Bower, M. et al. Topical calcipotriol treatment in advanced breast cancer. Lancet337, 701–702 (1991). ArticleCASPubMed Google Scholar
Gulliford, T. et al. A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br. J. Cancer78, 6–13 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lathers, D. M. R., Clark, J. I., Achille, N. J. & Young, M. R. I. Phase IB study of 25-hydroxyvitamin D3 treatment to diminish suppressor cells in head and neck cancer patients. Human Immunol.62, 1281–1293 (2001). Article Google Scholar
Slapak, C. A., Desforges, J. F., Fogaren, T. & Miller, K. B. Treatment of acute myeloid leukemia in the elderly with low-dose cytarabine, hydroxyurea, and calcitriol. Am. J. Hematol.41, 178–183 (1992). ArticleCASPubMed Google Scholar
Wieder, R. et al. Pharmacokinetics and safety of ILX23–7553, a non-calcemic-vitamin D3 analogue, in a phase I study of patients with advanced malignancies. Invest. New Drugs21, 445–452 (2003). ArticleCASPubMed Google Scholar
Fakih, M. G. et al. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral gefitinib in patients with advanced solid tumors. Clin. Cancer Res.13, 1216–1223 (2007). ArticleCASPubMed Google Scholar
Muindi, J. R. et al. A phase I and pharmacokinetics study of intravenous calcitriol in combination with oral dexamethasone and gefitinib in patients with advanced solid tumors. Cancer Chemother. Pharmacol.65, 22–30 (2009). ArticleCAS Google Scholar
Osborn, J. L. et al. Phase II trial of oral 1,25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol. Oncol.1, 195–198 (1995). ArticleCASPubMed Google Scholar
Gross, C., Stamey, T., Hancock, S. & Feldman, D. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J. Urol.159, 2035–2039 (1998). ArticleCASPubMed Google Scholar
Liu, G. et al. Phase I trial of 1α-hydroxyvitamin D2 in patients with hormone refractory prostate cancer. Clin. Cancer Res.8, 2820–2827 (2002). CASPubMed Google Scholar
Beer, T. M., Lemmon, D., Lowe, B. A. & Henner, W. D. High-dose weekly oral calcitriol in patients with a rising PA after prostatectomy or radiation for prostate carcinoma. Cancer97, 1217–1224 (2003). ArticleCASPubMed Google Scholar
Liu, G. et al. Phase II study of 1α-hydroxyvitamin D2 in the treatment of advanced androgen-independent prostate cancer. Clin. Cancer Res.9, 4077–4083 (2003). CASPubMed Google Scholar
Beer, T. M. et al. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J. Clin. Oncol.21, 123–128 (2003). ArticleCASPubMed Google Scholar
Beer, T. M., Garzotto, M. & Katovic, N. M. High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am. J. Clin. Oncol.27, 535–541 (2004). ArticleCASPubMed Google Scholar
Schwartz, G. G. et al. Phase I/II study of 19-nor-1α-25-dihydroxyvitamin D2 (paricalcitol) in advanced, androgen-insensitive prostate cancer. Clin. Cancer Res.11, 8680–8685 (2005). ArticleCASPubMed Google Scholar
Tiffany, N. M., Ryan, C. W., Garzotto, M., Wersinger, E. M. & Beer, T. M. High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study. J. Urol.174, 888–892 (2005). ArticleCASPubMed Google Scholar
Trump, D. L., Potter, D. M., Muindi, J., Brufsky, A. & Johnson, C. S. Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer106, 2136–2142 (2006). ArticleCASPubMed Google Scholar
Beer, T. M. et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo pus docetaxel in androgen-independent prostate cancer: a report from the ASCENT investigators. J. Clin. Oncol.25, 669–674 (2007). ArticleCASPubMed Google Scholar
Wang, Y. & DeLuca, H. F. Is the vitamin D receptor found in muscle? Endocrinology (in the press).
Matusiak, D., Murillo, G., Carroll, R. E., Mehta, R. G. & Benya R. V. Expression of vitamin D receptor and 25-hydroxyvitamin D3-1α-hydroxylase in normal and malignant human colon. Cancer Epidemiol. Biomarkers Prev.14, 2370–2376 (2005). ArticleCASPubMed Google Scholar