Anti-inflammatory therapeutics for the treatment of atherosclerosis (original) (raw)
National Institutes of Health: National Heart, Lung and Blood Institute. 2009 NHLBI Morbidity and Mortality Chart Book. National Heart, Lung and Blood Institute[online], (2009).
Libby, P., Ridker, P., Göran, K. & Hansson, K. Inflammation in atherosclerosis: from pathophysiology to practice. JACC Cardiovasc. Imaging54, 2129–2138 (2009). An excellent review of the role of inflammation in atherosclerosis. CAS Google Scholar
Dreschler, M., Megens, R., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation122, 1837–1845 (2010). ArticleCAS Google Scholar
Klingenberg, R. & Hansson, G. Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. Eur. Heart J.30, 2838–2844 (2009). ArticleCASPubMed Google Scholar
Virmani, R., Kolodgie, F., Burke, A., Farb, A. & Schwartz, S. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.20, 1262–1275 (2000). This paper established clear morphological correlates with plaques that are ruptured leading to MACE. ArticleCASPubMed Google Scholar
O'Connor, R. et al. Part 9: acute coronary syndromes: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation122 (Suppl. 2), 422–465 (2010). Article Google Scholar
Cannon, C. P. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med.350, 1495–1504 (2004). ArticleCASPubMed Google Scholar
Mehta, S. et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet358, 527–533 (2001). ArticleCASPubMed Google Scholar
Tardif, J.-C., Heinonen, T., Orloff, D. & Libby, P. Vascular biomarkers and surrogates in cardiovascular disease. Circulation113, 2936–2942 (2006). An excellent review of the current status of imaging and biomarker tools that are used to detect atherosclerotic disease. ArticlePubMed Google Scholar
Nissen, S. et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA292, 2217–2225 (2004). ArticleCASPubMed Google Scholar
Barter, P. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med.357, 2109–2122 (2007). ArticleCASPubMed Google Scholar
Kastelein, J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med.358, 1431–1443 (2008). ArticleCASPubMed Google Scholar
The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med.358, 2545–2559 (2008).
Reifenberg, K. et al. Role of C-reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer? Arterioscler. Thromb. Vasc. Biol.25, 1641–1646 (2005). ArticleCASPubMed Google Scholar
Ridker, P. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med.352, 20–28 (2005). This was the first detailed analysis demonstrating the relationship between lowering an inflammatory marker, hsCRP, and reducing MACE. ArticleCASPubMed Google Scholar
Nissen, S. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med.352, 29–38 (2005). ArticleCASPubMed Google Scholar
Zacho, J. et al. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med.359, 1897–1908 (2008). ArticleCASPubMed Google Scholar
Ridker, P. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med.359, 2195–2207 (2008). This was a landmark study demonstrating that statins reduced the incidence of MACE in patients with 'normal' LDL-C levels. ArticleCASPubMed Google Scholar
Schindhelm, R., vanDerZwan, L., Teerlink, T. & Scheffer, P. Myeloperoxidase: a useful biomarker for cardiovascular disease risk stratification? Clin. Chem.55, 1462–1470 (2009). ArticleCASPubMed Google Scholar
Blankenberg, S. et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation121, 2388–2397 (2010). ArticlePubMed Google Scholar
Möckel, M. et al. Role of N-terminal pro-B-type natriuretic peptide in risk stratification in patients presenting in the emergency room. Clin. Chem.51, 1624–1631 (2005). ArticleCASPubMed Google Scholar
Wu, A. The role of cardiac troponin in the recent redefinition of acute myocardial infarction. Clin. Lab. Sci.17, 50–52 (2004). PubMed Google Scholar
Tall, A., Yvan-Charvet, L., Terasaka, N., Pagler, T. & Wang, N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell. Metab.7, 365–375 (2008). ArticleCASPubMed Google Scholar
Yvant-Charvet, L. et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler. Thromb. Vasc. Biol.30, 1430–1438 (2010). ArticleCAS Google Scholar
Ridker, P. M., Rifai, N., Pfeffer, M. A., Sacks, F. & Braunwald, E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation100, 230–235 (1999). ArticleCASPubMed Google Scholar
Ridker, P. M. et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med.344, 1959–1965 (2001). ArticleCASPubMed Google Scholar
Tsou, C. L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest.117, 902–909 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yu, X. et al. Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc. Natl Acad. Sci. USA89, 6953–6957 (1992). ArticleCASPubMedPubMed Central Google Scholar
Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest.117, 195–205 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zapolska-Downar, D., Siennicka, A., Kaczmarczyk, M., Kołodziej, B. & Naruszewicz, M. Simvastatin modulates TNFα-induced adhesion molecules expression in human endothelial cells. Life Sci.75, 1287–1302 (2004). ArticleCASPubMed Google Scholar
Aikawa, M. et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation103, 276–283 (2001). ArticleCASPubMed Google Scholar
Steffens, S. & Mach, F. Anti-inflammatory properties of statins. Semin. Vasc. Med.4, 417–422 (2004). ArticlePubMed Google Scholar
Schönbeck, U. & Libby, P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation109, II18–26 (2004). ArticleCASPubMed Google Scholar
Tardif, J. et al. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet371, 1761–1768 (2008). ArticleCASPubMed Google Scholar
Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell. Metab.6, 386–397 (2007). ArticleCASPubMed Google Scholar
Rosenson, R. Future role for selective phospholipase A2 inhibitors in the prevention of atherosclerotic cardiovascular disease. Cardiovasc. Drugs Ther.23, 93–101 (2009). ArticlePubMed Google Scholar
Suckling, K. Phospholipase A2s: developing drug targets for atherosclerosis. Atherosclerosis212, 357–366 (2010). ArticleCASPubMed Google Scholar
The Lp-PLA2 Studies Collaboration. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet375, 1536–1544 (2010).
Wilensky, R. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nature Med.10, 1059–1066 (2008). ArticleCAS Google Scholar
Serruys, P. et al. Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque. Circulation118, 1172–1182 (2008). This research provided supporting evidence for a beneficial effect of Lp-PLA2 inhibition on coronary plaque formation. ArticleCASPubMed Google Scholar
Shaposhnik, Z., Wang, X., Trias, J., Fraser, H. & Lusis, A. The synergistic inhibition of atherogenesis in apoE−/− mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J. Lipid Res.50, 623–629 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hartford, M. et al. CRP, interleukin-6, secretory phospholipase A2 group IIA, and intercellular adhesion molecule-1 during the early phase of acute coronary syndromes and long-term follow-up. Int. J. Cardiol.108, 55–62 (2006). ArticlePubMed Google Scholar
Rosenson, R., Elliott, M., Stasiv, Y., Hislop, C. & for the PLASMA II Investigators. Randomized trial of an inhibitor of secretory phospholipase A2 on atherogenic lipoprotein subclasses in statin-treated patients with coronary heart disease. Eur. Heart J. 16 Nov 2010 (doi:10.1093/eurheartj/ehq374).
Peters-Golden, M. & Henderson, W. R. Jr. Leukotrienes. N. Engl. J. Med.357, 1841–1854 (2007). ArticleCASPubMed Google Scholar
DeCaterina, R. & Zampolli, A. From asthma to atherosclerosis-5-lipoxygenase, leukotrienes, and inflammation. N. Engl. J. Med.350, 4–7 (2004). ArticleCAS Google Scholar
Bäck, M. Leukotriene signaling in atherosclerosis and ischemia. Cardiovasc. Drugs Ther.23, 41–48 (2009). ArticleCASPubMed Google Scholar
Lötzer, K., Funk, C. & Habenicht, A. The 5-lipoxygenase pathway in arterial wall biology and atherosclerosis. Biochim. Biophys. Acta1736, 30–37 (2005). PubMed Google Scholar
Funk, C. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nature Rev. Drug Discov.4, 664–672 (2005). ArticleCAS Google Scholar
Mehrabian, M. & Allayee, H. 5-lipoxygenase and atherosclerosis. Curr. Opin. Lipidol.14, 447–457 (2003). ArticleCASPubMed Google Scholar
Dwyer, J. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med.350, 29–37 (2004). ArticleCASPubMed Google Scholar
Zhao, L. et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nature Med.10, 966–973 (2004). ArticleCASPubMed Google Scholar
Tabibiazar, R. et al. Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease. Physiol. Genomics.22, 213–226 (2005). ArticleCASPubMed Google Scholar
Spanbroek, R. et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl Acad. Sci. USA100, 1238–1243 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cipollone, F. et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler. Thromb. Vasc. Biol.25, 1665–1670 (2005). ArticleCASPubMed Google Scholar
Helgadottir, A. et al. Association between the gene encoding 5 lipoxygenase-activating protein and stroke replicated in a Scottish population. Am. J. Hum. Genet.76, 505–509 (2005). ArticleCASPubMedPubMed Central Google Scholar
Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genet.36, 233–239 (2004). ArticleCASPubMed Google Scholar
Assimes, T. et al. Common polymorphisms of ALOX5 and ALOX5AP and risk of coronary artery disease. Hum. Genet.4, 399–408 (2008). ArticleCAS Google Scholar
Hakonarson, H. et al. Effects of a 5 lipoxygenase activating protein inhibitor on biomarkers associated with risk of myocardial infarction. JAMA293, 2245–2256 (2005). ArticleCASPubMed Google Scholar
Drazen, J. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet.22, 168–170 (1999). ArticleCASPubMed Google Scholar
Tardiff, J.-C. et al. Treatment with 5-lipoxygenase inhibitor VIA-2291 (Atreleuton) in patients with recent acute coronary syndrome. Circ. Cardiovasc. Imaging3, 298–307 (2010). This research provided initial data linking a potent LT inhibitor with the reduction of coronary plaque as measured by coronary multi-detector computed tomography. Article Google Scholar
Nelken, N. A., Coughlin, S. R., Gordon, D. & Wilcox, J. N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest.88, 1121–1127 (1991). ArticleCASPubMedPubMed Central Google Scholar
Cushing, S. D. et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl Acad. Sci. USA87, 5134–5138 (1990). ArticleCASPubMedPubMed Central Google Scholar
Charo, I. F. et al. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc. Natl Acad. Sci. USA91, 2752–2756 (1994). ArticleCASPubMedPubMed Central Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). This research demonstrated that CCR2 targets monocytes to developing plaques and promotes atherosclerosis in mice. ArticleCASPubMed Google Scholar
Zernecke, A., Shagdarsuren, E. & Weber, C. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol.28, 1897–1908 (2008). ArticleCASPubMed Google Scholar
Barlic, J., Zhang, Y., Foley, J. F. & Murphy, P. M. Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor γ-dependent pathway. Circulation114, 807–819 (2006). ArticleCASPubMed Google Scholar
Gilbert, J. et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum c-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am. J. Cardiol. 15 March 2011 (doi:10.10.1016/j.amjcard.2010.11.005). A small study that demonstrated that neutralization of CCR2 reduces inflammation in patients who are at high risk for MACE.
Aiello, R. et al. CCR2 receptor blockade alters blood monocyte subpopulations but does not affect atherosclerotic lesions in _apoE_−/− mice. Atherosclerosis208, 370–375 (2010). ArticleCASPubMed Google Scholar
Piccinini, A. et al. Rationally evolving MCP-1/CCL2 into a decoy protein with potent anti-inflammatory activity in vivo. J. Biol. Chem.285, 8782–8792 (2010). ArticleCASPubMedPubMed Central Google Scholar
Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Med.15, 97–103 (2009). ArticleCASPubMed Google Scholar
Serbina, N. & Pamer, E. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunol.7, 311–317 (2006). ArticleCAS Google Scholar
Saag, K. et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum.59, 762–784 (2008). ArticleCASPubMed Google Scholar
Popa, C. et al. Influence of anti-tumour necrosis factor therapy on cardiovascular risk factors in patients with active rheumatoid arthritis. Ann. Rheum. Dis.64, 303–305 (2005). ArticleCASPubMed Google Scholar
Jacobsson, L. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol.34, 1213–1218 (2005). Google Scholar
Ridker, P. Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J. Thromb. Haemost.7 (Suppl.1), 332–339 (2009). ArticleCASPubMed Google Scholar
Fearon, W. & Fearon, D. Inflammation and cardiovascular disease; role of the interleukin-1 receptor antagonist. Circulation.117, 2577–2579 (2008). ArticlePubMed Google Scholar
Haverslag, R., Pasterkamp, G. & Hoefer, I. Targeting adhesion molecules in cardiovascular disorders. Cardiovasc. Hematol. Disord. Drug Targets8, 252–260 (2008). ArticleCASPubMed Google Scholar
Lindå, H. et al. Progressive multifocal leukoencephalopathy after natalizumab monotherapy. N. Engl. J. Med.361, 1081–1087 (2009). ArticlePubMed Google Scholar
Crossman, D. et al. Investigation of the effect of Interleukin-1 receptor antagonist (IL-1ra) on markers of inflammation in non-ST elevation acute coronary syndromes (the MRC-ILA-HEART Study). Trials25, 8 (2008). ArticleCAS Google Scholar
White, H. et al. Study design and rationale for the clinical outcomes of the STABILITY Trial (STabilization of Athersclerotic plaque By Initiation of darapLadIb TherapY comparing darapladib versus placebo in patients with coronary heart disease. Am. Heart J.160, 655–661 (2010). ArticleCASPubMed Google Scholar