Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med.7, 987–989 (2001). ArticleCASPubMed Google Scholar
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005). ArticleCASPubMed Google Scholar
Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev.15, 102–111 (2005). ArticleCASPubMed Google Scholar
Nagy, J. A., Chang, S. H., Shih, S. C., Dvorak, A. M. & Dvorak, H. F. Heterogeneity of the tumor vasculature. Semin. Thromb. Hemost.36, 321–331 (2010). ArticleCASPubMedPubMed Central Google Scholar
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285, 1182–1186 (1971). ArticleCASPubMed Google Scholar
Crawford, Y. & Ferrara, N. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res.335, 261–269 (2009). ArticleCASPubMed Google Scholar
Ferrara, N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev.21, 21–26 (2010). ArticleCASPubMed Google Scholar
Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15, 220–231 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nature Rev. Cancer8, 592–603 (2008). ArticleCAS Google Scholar
Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). ArticleCASPubMedPubMed Central Google Scholar
Padera, T. P. et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Ther.7, 2272–2279 (2008). ArticleCASPubMedPubMed Central Google Scholar
Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol.29, 83–88 (2010). ArticleCASPubMed Google Scholar
Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA93, 14765–14770 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.64, 3731–3736 (2004). ArticleCASPubMed Google Scholar
Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell6, 553–563 (2004). CASPubMed Google Scholar
Jain, R. K. et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA95, 10820–10825 (1998). ArticleCASPubMedPubMed Central Google Scholar
Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature416, 279–280 (2002). ArticleCASPubMed Google Scholar
Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell136, 839–851 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature453, 410–414 (2008). ArticleCASPubMed Google Scholar
Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature456, 814–818 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res.48, 2641–2658 (1988). CASPubMed Google Scholar
Pettersson, A. et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest.80, 99–115 (2000). ArticleCASPubMed Google Scholar
Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation17, 206–225 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jain, R. K. & Styllanopoulos, T. Delivering nanomedicine to solid tumors. Nature Rev. Clin. Oncol.7, 653–664 (2010). ArticleCAS Google Scholar
Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.163, 1801–1815 (2003). ArticlePubMedPubMed Central Google Scholar
Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.160, 985–1000 (2002). ArticlePubMedPubMed Central Google Scholar
Ozawa, M. G. et al. Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer104, 2104–2115 (2005). ArticleCASPubMed Google Scholar
Van de Veire, S. et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell141, 178–190 (2010). ArticleCASPubMed Google Scholar
Hagendoorn, J. et al. Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res.66, 3360–3364 (2006). ArticleCASPubMed Google Scholar
Less, J. R., Posner, M. C., Skalak, T. C., Wolmark, N. & Jain, R. K. Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation4, 25–33 (1997). ArticleCASPubMed Google Scholar
Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11, 83–95 (2007). ArticleCASPubMedPubMed Central Google Scholar
Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med.10, 145–147 (2004). ArticleCASPubMed Google Scholar
Rocha, S. F. & Adams, R. H. Molecular differentiation and specialization of vascular beds. Angiogenesis12, 139–147 (2009). ArticleCASPubMed Google Scholar
Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA95, 4607–4612 (1998). ArticleCASPubMedPubMed Central Google Scholar
Potenta, S., Zeisberg, E. & Kalluri, R. The role of endothelial-to-mesenchymal transition in cancer progression. Br. J. Cancer99, 1375–1379 (2008). ArticleCASPubMedPubMed Central Google Scholar
Langenkamp, E. & Molema, G. Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res.335, 205–222 (2009). ArticleCASPubMed Google Scholar
Yang, Z. F. & Poon, R. T. Vascular changes in hepatocellular carcinoma. Anat. Rec. (Hoboken)291, 721–734 (2008). ArticleCAS Google Scholar
Zhu, A. X., Duda, D. G., Sahani, D. V. & Jain, R. K. HCC and angiogenesis: possible targets and future directions. Nature Rev. Clin. Oncol. 8 Mar 2011 (doi:10.1038/nrclinonc.2011.30).
Pries, A. R., Hopfner, M., le Noble, F., Dewhirst, M. W. & Secomb, T. W. The shunt problem: control of functional shunting in normal and tumour vasculature. Nature Rev. Cancer10, 587–593 (2010). ArticleCAS Google Scholar
Diaz-Flores, L. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol.24, 909–969 (2009). CASPubMed Google Scholar
Raza, A., Franklin, M. J. & Dudek, A. Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol.85, 593–598 (2010). ArticleCASPubMed Google Scholar
Gerhardt, H. & Semb, H. Pericytes: gatekeepers in tumour cell metastasis? J. Mol. Med.86, 135–144 (2008). ArticlePubMed Google Scholar
Eble, J. A. & Niland, S. The extracellular matrix of blood vessels. Curr. Pharm. Des.15, 1385–1400 (2009). ArticleCASPubMed Google Scholar
Boucher, Y. & Jain, R. K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res.52, 5110–5114 (1992). CASPubMed Google Scholar
Moeller, B. J., Richardson, R. A. & Dewhirst, M. W. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev.26, 241–248 (2007). ArticleCASPubMed Google Scholar
Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature427, 695 (2004). ArticleCASPubMed Google Scholar
Rey, S. & Semenza, G. L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res.86, 236–242 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cardone, R. A., Casavola, V. & Reshkin, S. J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Rev. Cancer5, 786–795 (2005). ArticleCAS Google Scholar
Hunt, T. K., Aslam, R., Hussain, Z. & Beckert, S. Lactate, with oxygen, incites angiogenesis. Adv. Exp. Med. Biol.614, 73–80 (2008). ArticleCASPubMed Google Scholar
Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med.16, 116–122 (2010). ArticleCASPubMed Google Scholar
Sullivan, R. & Graham, C. H. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev.26, 319–331 (2007). ArticleCASPubMed Google Scholar
Lunt, S. J., Chaudary, N. & Hill, R. P. The tumor microenvironment and metastatic disease. Clin. Exp. Metastasis26, 19–34 (2009). ArticlePubMed Google Scholar
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell139, 871–890 (2009). ArticleCASPubMed Google Scholar
Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature379, 88–91 (1996). ArticleCASPubMed Google Scholar
Nizet, V. & Johnson, R. S. Interdependence of hypoxic and innate immune responses. Nature Rev. Immunol.9, 609–617 (2009). ArticleCAS Google Scholar
Chung, A. S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Rev. Cancer10, 505–514 (2010). ArticleCAS Google Scholar
Nagy, J. A., Dvorak, A. M. & Dvorak, H. F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol.2, 251–275 (2007). ArticleCASPubMed Google Scholar
Jain, R. K. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nature Rev. Cancer8, 309–316 (2008). ArticleCAS Google Scholar
Baffert, F. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol.290, H547–H559 (2006). ArticleCASPubMed Google Scholar
Kamoun, W. S. et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol.27, 2542–2552 (2009). ArticleCASPubMedPubMed Central Google Scholar
Greenberg, J. I. et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature456, 809–813 (2008). ArticleCASPubMedPubMed Central Google Scholar
Abramovitch, R., Dafni, H., Smouha, E., Benjamin, L. E. & Neeman, M. In vivo prediction of vascular susceptibility to vascular endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. Cancer Res.59, 5012–5016 (1999). CASPubMed Google Scholar
Hedlund, E. M., Hosaka, K., Zhong, Z., Cao, R. & Cao, Y. Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature. Proc. Natl Acad. Sci. USA106, 17505–17510 (2009). ArticlePubMedPubMed Central Google Scholar
Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev. Cancer8, 942–956 (2008). ArticleCAS Google Scholar
Vosseler, S., Mirancea, N., Bohlen, P., Mueller, M. M. & Fusenig, N. E. Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants. Cancer Res.65, 1294–1305 (2005). ArticleCASPubMed Google Scholar
Dickson, P. V. et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin. Cancer Res.13, 3942–3950 (2007). ArticleCASPubMed Google Scholar
Myers, A. L., Williams, R. F., Ng, C. Y., Hartwich, J. E. & Davidoff, A. M. Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J. Pediatr. Surg.45, 1080–1085 (2010). ArticlePubMedPubMed Central Google Scholar
Franco, M. et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res.66, 3639–3648 (2006). ArticleCASPubMed Google Scholar
Aragones, J., Fraisl, P., Baes, M. & Carmeliet, P. Oxygen sensors at the crossroad of metabolism. Cell. Metab.9, 11–22 (2009). ArticleCASPubMed Google Scholar
Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell40, 294–309 (2010). ArticleCASPubMedPubMed Central Google Scholar
De Bock, K., De Smet, F., Leite De Oliveira, R., Anthonis, K. & Carmeliet, P. Endothelial oxygen sensors regulate tumor vessel abnormalization by instructing phalanx endothelial cells. J. Mol. Med.87, 561–569 (2009). ArticleCASPubMed Google Scholar
Hellberg, C., Ostman, A. & Heldin, C. H. PDGF and vessel maturation. Recent Results Cancer Res.180, 103–114 (2010). ArticleCASPubMed Google Scholar
Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol.29, 630–638 (2009). ArticleCASPubMed Google Scholar
Abramsson, A., Lindblom, P. & Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest.112, 1142–1151 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huang, F. J. et al. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev. Biol.344, 1035–1046 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yonenaga, Y. et al. Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology69, 159–166 (2005). ArticlePubMed Google Scholar
Jayson, G. C. et al. Blockade of platelet-derived growth factor receptor-β by CDP860, a humanized, PEGylated di-Fab′, leads to fluid accumulation and is associated with increased tumor vascularized volume. J. Clin. Oncol.23, 973–981 (2005). ArticleCASPubMed Google Scholar
Liu, J. et al. PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin. Cancer Res. 1 Apr 2011 (doi:10.1158/1078-0432.CCR-10-2456).
Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nature Rev. Mol. Cell Biol.10, 165–177 (2009). ArticleCAS Google Scholar
Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science286, 2511–2514 (1999). ArticleCASPubMed Google Scholar
Stoeltzing, O. et al. Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res.63, 3370–3377 (2003). CASPubMed Google Scholar
Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nature Cell Biol.10, 527–537 (2008). ArticleCASPubMed Google Scholar
Chae, S. S. et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin. Cancer Res.16, 3618–3627 (2010). ArticleCASPubMedPubMed Central Google Scholar
Falcon, B. L. et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am. J. Pathol.175, 2159–2170 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nasarre, P. et al. Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res.69, 1324–1333 (2009). ArticleCASPubMedPubMed Central Google Scholar
Koh, Y. J. et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell18, 171–184 (2010). ArticleCASPubMed Google Scholar
Kashiwagi, S. et al. Perivascular nitric oxide gradients normalize tumor vasculature. Nature Med.14, 255–257 (2008). ArticleCASPubMed Google Scholar
Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med.7, 575–583 (2001). ArticleCASPubMed Google Scholar
Rolny, C. et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell19, 31–44 (2011). ArticleCASPubMed Google Scholar
Bais, C. et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell141, 166–177 (2010). ArticleCASPubMed Google Scholar
Gullino, P. M. Consideration on blood supply and fluid exchange in tumors. Prog. Clin. Biol. Res.107, 1–20 (1982). CASPubMed Google Scholar
Bullitt, E. et al. Abnormal vessel tortuosity as a marker of treatment response of malignant gliomas: preliminary report. Technol. Cancer Res. Treat.3, 577–584 (2004). ArticlePubMed Google Scholar
Wagemakers, M. et al. Tumor vessel biology in pediatric intracranial ependymoma. J. Neurosurg. Pediatr.5, 335–341 (2010). ArticlePubMed Google Scholar
Willett, C. G. et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J. Clin. Oncol.27, 3020–3026 (2009). ArticleCASPubMedPubMed Central Google Scholar
Willett, C. G. et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J. Clin. Oncol.23, 8136–8139 (2005). ArticlePubMed Google Scholar
Batchelor, T. T. et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol.28, 2817–2823 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sorensen, A. G. et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res.69, 5296–5300 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sorensen, A. G., Batchelor, T. T., Wen, P. Y., Zhang, W. T. & Jain, R. K. Response criteria for glioma. Nature Clin. Pract. Oncol.5, 634–644 (2008). Article Google Scholar
Claes, A. et al. Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol. Cancer Ther.7, 71–78 (2008). ArticleCASPubMed Google Scholar
Zhu, A. X. et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J. Clin. Oncol.27, 3027–3035 (2009). ArticleCASPubMedPubMed Central Google Scholar
Duda, D. G. et al. Plasma soluble VEGFR-1 is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer. Oncologist15, 577–583 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wildiers, H. et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br. J. Cancer88, 1979–1986 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.70, 6171–6180 (2010). ArticleCASPubMedPubMed Central Google Scholar
Van Steenkiste, C. et al. Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology137, 2112–2124 (2009). ArticleCASPubMed Google Scholar
Plotkin, S. R. et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N. Engl. J. Med.361, 358–367 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jain, R. K., Finn, A. V., Kolodgie, F. D., Gold, H. K. & Virmani, R. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nature Clin. Pract. Cardiovasc. Med.4, 491–502 (2007). ArticleCAS Google Scholar
Stantz, K. M., Cao, M., Cao, N., Liang, Y. & Miller, K. D. Monitoring the longitudinal intra-tumor physiological impulse response to VEGFR2 blockade in breast tumors using DCE-CT. Mol. Imaging Biol. 19 Oct 2010 (doi:10.1007/s11307-010-044-7).
O'Connor, J. P. et al. Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin. Cancer Res.15, 6674–6682 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ansiaux, R. et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin. Cancer Res.11, 743–750 (2005). CASPubMed Google Scholar
Zhou, Q., Guo, P. & Gallo, J. M. Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin. Cancer Res.14, 1540–1549 (2008). ArticlePubMed Google Scholar
Dings, R. P. et al. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin. Cancer Res.13, 3395–3402 (2007). ArticleCASPubMedPubMed Central Google Scholar
Eichhorn, M. E. et al. Contrast enhanced MRI and intravital fluorescence microscopy indicate improved tumor microcirculation in highly vascularized melanomas upon short-term anti-VEGFR treatment. Cancer Biol. Ther.7, 1006–1013 (2008). ArticleCASPubMed Google Scholar
Maione, F. et al. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. J. Clin. Invest.119, 3356–3372 (2009). CASPubMedPubMed Central Google Scholar
McGee, M. C. et al. Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys.76, 1537–1545 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kamoun, W. S. et al. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nature Methods7, 655–660 (2010). ArticleCASPubMedPubMed Central Google Scholar
Heishi, T. et al. Restoration of peri-vascular nitric oxide gradient radio-sensitizes murine breast cancers via vascular normalization. American Association for Cancer Research[online], (2011). Google Scholar