Efficacy at g-protein-coupled receptors (original) (raw)
Waud, D. R. Pharmacological receptors. Pharmacol. Rev.20, 49–88 (1968). CASPubMed Google Scholar
Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol.125, 924–947 (1998). ArticleCASPubMed Google Scholar
Kenakin, T. P. & Ross, E. in Goodman and Gilman's The Pharmacological Basis of Therapeutics 10th edn Ch. 2 (eds Hardman, J. G. & Limbird, L. E.) 31–45 (McGraw-Hill, New York, 2001). Google Scholar
Kenakin, T. P. Efficacy in drug receptor theory: outdated concept or under-valued tool? Trends Pharmacol. Sci.20, 400–405 (1999). ArticleCASPubMed Google Scholar
Onaran, H. O. & Costa, T. Agonist efficacy and allosteric models of receptor action. Ann. NY Acad. Sci.812, 98–115 (1997). ArticleCASPubMed Google Scholar
Onaran, H. O., Scheer, A., Cotecchia, S. & Costa, T. in The Pharmacology of Functional, Biochemical, and Recombinant Systems Handbook of Experimental Pharmacology Vol. 148 (eds Kenakin, T. P. & Angus, J. A.) 217–280 (Springer, Heidelberg, 2000).References 5 and 6 outline a new approach to viewing receptor activation as being a process of probability of stabilization of receptor conformations for the expression of biological activity. Google Scholar
Ariens, E. J. Affinity and intrinsic activity in the theory of competitive inhibition. Part I. Problems and theory. Arch. Int. Pharmacodyn. Ther.99, 32–49 (1954).The first paper to discuss the property of some molecules to induce response as an intrinsic property of the drug–receptor pair and, also, the first to attempt to quantify this property. CASPubMed Google Scholar
Kenakin, T. P. Prenalterol as a selective cardiostimulant: differences between organ and receptor selectivity. J. Cardiovasc. Pharmacol.7, 208–210 (1985). ArticleCASPubMed Google Scholar
Stephenson, R. P. A modification of receptor theory. Br. J. Pharmacol.11, 379–393 (1956).Following reference7, this work extended the concept of efficacy as being a drug–receptor property. It also introduced the important concept of the non-linear relationships between receptor occupancy, stimulus and response. CAS Google Scholar
Furchgott, R. F. in Advances in Drug Research Vol. 3. (eds Harper, N. J. & Simmonds, A. B.) 21–55 (Academic, London/New York, 1966).This paper described the quantization of efficacy into 'intrinsic efficacy', namely the unit stimulus given to a single receptor by an agonist. This concept enabled comparison of stimuli using receptor systems containing different receptor densities on the cell surface. Google Scholar
Wyman, J. The binding potential, a neglected linkage concept. J. Mol. Biol.11, 631–667 (1965). ArticleCASPubMed Google Scholar
Wyman, J. Allosteric linkage. J. Am. Chem. Soc.89, 2202–2232 (1967).An important treatise on linkage-theory analysis of the reciprocal allosteric interaction of ligands and proteins. ArticleCAS Google Scholar
Weber, G. Ligand binding and internal equilibria in proteins. Biochemistry11, 864–878 (1972). ArticleCASPubMed Google Scholar
Rodbell, M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature284, 17–22 (1980). ArticleCASPubMed Google Scholar
Gilman, A. G. G-proteins: transducers of G-protein generated signals. Annu. Rev. Biochem.56, 615–645 (1987). ArticleCASPubMed Google Scholar
Bourne, H. R. How receptors talk to trimeric G-proteins. Curr. Opin. Cell Biol.9, 134–142 (1997). ArticleCASPubMed Google Scholar
Chen, W.-J. et al. Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. Mol. Pharmacol.52, 1164–1175 (1997). ArticleCASPubMed Google Scholar
Kenakin, T. Differences between natural and recombinant G protein-coupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol. Sci.18, 456–464 (1997). ArticleCASPubMed Google Scholar
Watson, C. et al. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol.58, 1230–1238 (2000). ArticleCASPubMed Google Scholar
Clarke, W. P. & Bond, R. A. The elusive nature of intrinsic efficacy. Trends Pharmacol. Sci.19, 271–277 (1998). Article Google Scholar
Frauenfelder, H., Parak, F. & Young, R. D. Conformational substrates in proteins. Annu. Rev. Biophys. Biophys. Chem.17, 451–479 (1988). ArticleCASPubMed Google Scholar
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science254, 1598–1603 (1991). ArticleCASPubMed Google Scholar
Hvidt, A. & Nielsen, S. Hydrogen exchange in proteins. Adv. Protein Chem.21, 287–386 (1966). ArticleCASPubMed Google Scholar
Woodward, C. Is the slow-exchange core the protein folding core? Trends Biol. Sci.18, 359–360 (1993). ArticleCAS Google Scholar
Woodward, C., Simon, I. & Tuchsen, E. Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem.48, 135–160 (1982). ArticleCASPubMed Google Scholar
Hilser, V. J. & Freire, E. Structure-based calculation of the equilibrium folding pathway of proteins: correlation with hydrogen exchange protection factors. J. Mol. Biol.262, 756–772 (1996). ArticleCASPubMed Google Scholar
Hilser, V. J. & Freire, E. Predicting the equilibrium protein folding pathway: structure-based analysis of staphylococcal nuclease. Protein Struct. Funct. Genet.27, 171–183 (1997). ArticleCAS Google Scholar
Hilser, V. J., Dowdy, D., Oas, T. G. & Freire, E. The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc. Natl Acad. Sci. USA95, 9903–9908 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bai, Y., Sosnick, T. R., Mayne, L. & Englander, S. W. Protein folding intermediates: native-state hydrogen exchange. Science269, 192–197 (1995). ArticleCASPubMed CentralPubMed Google Scholar
Milne, J. S., Mayne, L., Roder, H., Wand, A. J. & Englander, S. W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci.7, 739–745 (1998). ArticleCASPubMed CentralPubMed Google Scholar
Milne, J. S., Xu, Y., Mayne, L. C. & Englander, S. W. Experimental study of the protein folding landscape: unfolding reactions in cytochrome c. J. Mol. Biol.290, 811–822 (1999). ArticleCASPubMed Google Scholar
Ikezu, T., Okamoto, T., Ogata, E. & Nishimoto, I. Amino acids 356–372 constitute a Gi-activator sequence of the α2-adrenergic receptor and have a Phe substitute in the G-protein-activator sequence motif. FEBS Lett.31, 29–32 (1992). Article Google Scholar
Eason, M. G. & Liggett, S. B. Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the α2A-adrenergic receptor. Evidence for distinct structural determinants that confer Gs versus Gi coupling. J. Biol. Chem.270, 24753–24760 (1995). ArticleCASPubMed Google Scholar
Nasman, J., Jansson, C. C. & Akerman, K. E. The second intracellular loop of the α2-adrenergic receptor determines subtype-specific coupling to cAMP production. J. Biol. Chem.272, 9703–9708 (1997). ArticleCASPubMed Google Scholar
Burt, A. R. et al. Agonist occupation of an α2A-adrenoceptor–Gi1α fusion protein results in activation of both receptor-linked and endogenous Gi-proteins. Comparisons of their contributions to GTPase activity and signal transduction and analysis of receptor G-protein activation stoichiometry. J. Biol. Chem.273, 10367–10375 (1998). ArticleCASPubMed Google Scholar
Wade, S. M. et al. Gi activator region of α2A-adrenergic receptors: distinct basic residues mediate Gi versus Gs activation. Mol. Pharmacol.56, 1005–1013 (1999). ArticleCASPubMed Google Scholar
McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature393, 333–339 (1998).This paper is one of the first to describe accessory proteins that completely change receptor phenotypes by physical association. ArticleCASPubMed Google Scholar
Foord, S. M. & Marshall, F. H. RAMPS: Accessory proteins for seven transmembrane domain receptors. Trends Pharmacol. Sci.20, 184–187 (1999). ArticleCASPubMed Google Scholar
Armour, S. L., Foord, S., Kenakin, T. & Chen, W.-J. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor. J. Pharmacol. Toxicol. Methods42, 217–224 (1999). ArticleCASPubMed Google Scholar
Sato, M. et al. Factors determining specificity of signal transduction by G-protein coupled receptors. J. Biol. Chem.270, 15269–15276 (1993). Article Google Scholar
Nanoff, C., Mitteraurer, T., Roka, F., Hohenegger, M. & Friessmuth, M. Species differences in A1 adenosine/G-protein coupling: identification of a membrane protein that stabilizes the association of the receptor/G-protein complex. Mol. Pharmacol.48, 806–817 (1995). CASPubMed Google Scholar
Hall, R. A. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature392, 626–630 (1998). ArticleCASPubMed Google Scholar
Ullmer, C., Schmuck, K., Figge, A. & Lubbert, H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett.424, 63–68 (1998). ArticleCASPubMed Google Scholar
Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signaling: beyond the G-protein paradigm. J. Cell Biol.145, 927–932 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Abdalla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature407, 94–98 (2000). ArticleCASPubMed Google Scholar
Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science288, 154–157 (2000). ArticleCASPubMed Google Scholar
Smith, M. W. et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science277, 959–965 (1997). ArticleCASPubMed Google Scholar
Costa, T. & Herz, A. Antagonists with negative intrinsic activity at δ-opioid receptors coupled to GTP-binding proteins. Proc. Natl Acad. Sci. USA86, 7321–7325 (1989).The first clear demonstration of constitutive activity for GPCRs that was not due to residual agonist in the medium. This work necessitated the complete revision of the ternary complex model. ArticleCASPubMedPubMed Central Google Scholar
Katz, B. & Thesleff, S. A study of the 'desensitization' produced by acetylcholine at the motor end plate. J. Physiol. (Lond.)138, 63–80 (1957). ArticleCAS Google Scholar
Del Castillo, J. & Katz, B. Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. London B146, 369–381 (1957). ArticleCAS Google Scholar
Colquhoun, D. Imprecision in presentation of binding studies. Trends Pharmacol. Sci.6, 197 (1985).
Karlin, A. On the application of 'a plausible model' of allosteric proteins to the receptor for acetylcholine. J. Theoret. Biol.16, 306–320 (1967). ArticleCAS Google Scholar
Thron, C. D. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9, 1–9 (1973). ArticleCASPubMed Google Scholar
Leff, P. The two-state model of receptor activation. Trends Pharmacol. Sci.16, 89–97 (1995). ArticleCASPubMed Google Scholar
Gether, U., Lin, S. & Kobilka, B. K. Fluorescent labeling of purified β2-adrenergic receptor: evidence for ligand specific conformational changes. J. Biol. Chem.270, 28268–28275 (1995). ArticleCASPubMed Google Scholar
Bohm, S. K., Grady, E. F. & Bunnett, N. W. Regulatory mechanisms that modulate signaling by G-protein-coupled receptors. Biochem. J.322, 1–18 (1997). ArticleCASPubMed CentralPubMed Google Scholar
Koenig, J. A. & Edwardson, J. M. Endocytosis and recycling of G-protein-coupled receptors. Trends Pharmacol. Sci.18, 276–287 (1997). ArticleCASPubMed Google Scholar
Riccobene, T. A., Omann, G. M. & Linderman, J. J. Modeling activation and desensitization of G-protein coupled receptors provides insight into ligand efficacy. J. Theor. Biol.200, 207–222 (1999). ArticleCASPubMed Google Scholar
Remmers, A. E., Clark, M. J., Ynag, X. & Medzihradsky, F. δ-opioid receptor down-regulation is independent of functional G-protein yet is dependent on agonist efficacy. J. Pharmacol. Exp. Ther.287, 625–632 (1998). CASPubMed Google Scholar
Zaki, P. A. et al. Agonist-, antagonist- and inverse agonist-regulated trafficking of the δ-opioid receptor correlates with, but does not require, G-protein activation. J. Pharmacol. Exp. Ther.298, 1015–1020 (2001). CASPubMed Google Scholar
Roettger, B. F. et al. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor. Mol. Pharmacol.51, 357–366 (1997). CASPubMed Google Scholar
Alkhatib, G. et al. A RANTES, MIP-1α, MIP-1β receptor as a fusion co-factor for macrophage-tropic HIV-1. Science272, 1955–1958 (1996). ArticleCASPubMed Google Scholar
Cocchi, F., DeVico, A. L., Garzino-Demo, A., Cara, R. C. & Lusso, P. The V3 domain of the HIV gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nature Med.2, 1244–1247 (1996). ArticleCASPubMed Google Scholar
Simmons, G. et al. Potential inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science276, 276–279 (1997). ArticleCASPubMed Google Scholar
Amara, A. et al. HIV co-receptor down-regulation as an antiviral principle: SDF-1 α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med.186, 139–146 (1997). ArticleCASPubMed CentralPubMed Google Scholar
Mack, M. et al. Aminooxypentane–RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J. Exp. Med.187, 1215–2438 (1998). ArticleCASPubMed CentralPubMed Google Scholar
Rodriguez-Frade, J. M. et al. Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J. Cell Biol.144, 755–765 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Thomas, W. G., Quian, H., Chang, C.-S. & Karnik, S. Agonist-induced phosphorylation of the angiotensin II (AT1A) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. J. Biol. Chem.275, 2893–2900 (2000). ArticleCASPubMed Google Scholar
Chakrabarti, S., Law, P. Y. & Loh, H. H. Distinct differences between morphine- and [δ-Ala2,_N_-MePhe4,Gly-ol5]enkephalin-μ-opioid complexes demonstrated by cyclic independent protein kinase phosphorylation. J. Neurochem.71, 231–239 (1998). ArticleCASPubMed Google Scholar
Yu, Y. et al. μ-Opioid receptor phosphorylation, desensitization, and ligand efficacy. J. Biol. Chem.272, 28869–28874 (1997). ArticleCASPubMed Google Scholar
Blake, A. D., Bot, G., Freeman, J. C. & Reisine, T. Differential opioid agonist regulation of the mouse μ-opioid receptor. J. Biol. Chem.272, 782–790 (1997). ArticleCASPubMed Google Scholar
Keith, D. E. et al. Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem.271, 19021–19249 (1996). ArticleCASPubMed Google Scholar
Morisset, S. et al. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature408, 860–864 (2000). ArticleCASPubMed Google Scholar
Morris, B. J. & Millan, M. J. Inability of an opioid antagonist lacking negative intrinsic activity to induce opioid receptor up-regulation in vivo. Br. J. Pharmacol.102, 883–886 (1991). ArticleCASPubMed CentralPubMed Google Scholar
Smit, M. J. et al. Inverse agonism of histamine H2 antagonists accounts for up-regulation of spontaneously active histamine H2 receptors. Proc. Natl Acad. Sci. USA93, 6802–6807 (1996). ArticleCASPubMedPubMed Central Google Scholar
MacEwan, D. J. & Milligan, G. Inverse agonist-induced up-regulation of the human β2-adrenoceptor in transfected neuroblastoma X glioma hybrid cells. Mol. Pharmacol.50, 1479–1486 (1996). CASPubMed Google Scholar
Milligan, G. & Bond, R. A. Inverse agonism and the regulation of receptor number. Trends Pharmacol. Sci.18, 468–474 (1997). ArticleCASPubMed Google Scholar
Berg, K. A., Stout, B. D., Cropper, J. D., Maayani, S. & Clarke, W. P. Novel actions of inverse agonists on 5-HT2C receptor systems. Mol. Pharmacol.55, 863–872 (1999). CASPubMed Google Scholar
Nagaraja, S., Iyer, S., Liu, X., Eichberg, J. & Bond, R. A. Treatment with inverse agonists enhances baseline atrial contractility in transgenic mice with chronic β2-adrenoceptor activation. Br. J. Pharmacol.127, 1099–1104 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Chen, G. et al. Use of constitutive G protein-coupled receptor activity for drug discovery. Mol. Pharmacol.57, 125–134 (1999). Google Scholar
Chen, G. et al. Constitutive receptor systems for drug discovery. J. Pharmacol. Toxicol. Methods42, 199–206 (1999). ArticleCASPubMed Google Scholar
Jayawickreme, C. K., Graminski, G. F., Quillan, J. M. & Lerner, M. R. Creation and functional screening of a multi-use peptide library. Proc. Natl Acad. Sci. USA91, 1614–1618 (1994). ArticleCASPubMedPubMed Central Google Scholar
Jayawickreme, C. K., Graminski, G. F., Quillan, J. M. & Lerner, M. R. Discovery and structure–function analysis of α-melanocyte-stimulating hormone antagonists. J. Biol. Chem.269, 29846–29854 (1994). CASPubMed Google Scholar
Lerner, M. R. Tools for investigating functional interactions between ligands and G-protein-coupled receptors. Trends Neurosci.17, 142–146 (1994). ArticleCASPubMed Google Scholar
Chen, W.-J. et al. Recombinant human CXC-chemokine receptor-4 in melanophores are linked to Gi protein: seven transmembrane coreceptors for human immunodeficiency virus entry into cells. Mol. Pharmacol.53, 177–181 (1998). ArticleCASPubMed Google Scholar
Kenakin, T. P. in Biomedical Applications of Computer Modeling (ed. Christopoulos, A.) 1–20 (CRC Press, Florida, 2000). Book Google Scholar
Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J. Biol. Chem.268, 4625–4636 (1993).This paper discusses the intrinsic property of receptors to form an active state in the absence of ligand, and so is the first to introduce the extended ternary complex model for GPCRs. CASPubMed Google Scholar
Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. I. Model description. J. Theor. Biol.178, 151–167 (1996). ArticleCAS Google Scholar
Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. II. Understanding apparent affinity. J. Theor. Biol.178, 169–182 (1996). ArticleCAS Google Scholar
Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. III. Resurrecting efficacy. J. Theor. Biol.181, 381–397 (1996).References90–92describe a more thermodynamically complete (but more complex) version of the extended ternary complex model. It allows non-activated receptors to interact with G proteins to produce non-signalling species. ArticleCASPubMed Google Scholar