Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet.17, 257–271 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lefterova, M. I., Suarez, C. J., Banaei, N. & Pinsky, B. A. Next-generation sequencing for infectious disease diagnosis and management. J. Mol. Diagn.17, 623–634 (2015). ArticleCASPubMed Google Scholar
Goldfeder, R. L. et al. Medical implications of technical accuracy in genome sequencing. Genome Med.8, 24 (2016). This study investigated the location of clinically relevant variants in regions of the human genome that are refractory to reliable genotyping with NGS owing to the presence of extreme GC content or repetitive sequences. ArticleCASPubMedPubMed Central Google Scholar
van Dijk, E. L., Jaszczyszyn, Y. & Thermes, C. Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res.322, 12–20 (2014). ArticleCASPubMed Google Scholar
Mu, W., Lu, H.-M., Chen, J., Li, S. & Elliott, A. M. Sanger confirmation is required to achieve optimal sensitivity and specificity in next-generation sequencing panel testing. J. Mol. Diagn.18, 923–932 (2016). ArticleCASPubMed Google Scholar
Beck, T. F., Mullikin, J. C. & Biesecker, L. G. Systematic evaluation of Sanger validation of next-generation sequencing variants. Clin. Chem.62, 647–654 (2016). ArticleCASPubMedPubMed Central Google Scholar
Matthijs, G. et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet.24, 2–5 (2016). ArticleCASPubMed Google Scholar
Gargis, A. S., Kalman, L. & Lubin, I. M. Assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories. J. Clin. Microbiol.54, 2857–2865 (2016). ArticlePubMedPubMed Central Google Scholar
Gargis, A. S. et al. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat. Biotechnol.33, 689–693 (2015). ArticleCASPubMedPubMed Central Google Scholar
Aziz, N. et al. College of American Pathologists' laboratory standards for next-generation sequencing clinical tests. Arch. Pathol. Lab. Med.139, 481–493 (2015). ArticlePubMed Google Scholar
Schrijver, I. et al. Opportunities and challenges associated with clinical diagnostic genome sequencing. J. Mol. Diagn.14, 525–540 (2012). ArticleCASPubMed Google Scholar
Gargis, A. S. et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol.30, 1033–1036 (2012). The Nex-StoCT (Next-generation Sequencing: Standardization of Clinical Testing) workgroup developed a set of guidelines to ensure that results from NGS tests are sufficiently reliable for clinical diagnosis, including the recommendation of reference standards for test validation, quality control and proficiency testing. ArticleCASPubMed Google Scholar
Centers for Disease Control and Prevention. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. MMWR Recomm. Rep.58, 1–29 (2009).
Chen, B. et al. Developing a sustainable process to provide quality control materials for genetic testing. Genet. Med.7, 534–549 (2005). ArticlePubMed Google Scholar
Greg Miller, W. et al. Roadmap for harmonization of clinical laboratory measurement procedures. Clin. Chem.57, 1108–1117 (2011). ArticleCASPubMed Google Scholar
Franzini, C. & Ceriotti, F. Impact of reference materials on accuracy in clinical chemistry. Clin. Biochem.31, 449–457 (1998). ArticleCASPubMed Google Scholar
International Organization for Standardization. ISO Guide 30:2015 — Reference Materials — Selected Terms and Definitions (ISO, 2015).
Bunk, D. M. Reference materials and reference measurement procedures: an overview from a national metrology institute. Clin. Biochem. Rev.28, 131–137 (2007). PubMedPubMed Central Google Scholar
Vesper, H. W., Miller, W. G. & Myers, G. L. Reference materials and commutability. Clin. Biochem. Rev.28, 139–147 (2007). PubMedPubMed Central Google Scholar
Miller, W. G., Myers, G. L. & Rej, R. Why commutability matters. Clin. Chem.52, 553–554 (2006). ArticleCASPubMed Google Scholar
Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet.15, 121–132 (2014). ArticleCASPubMed Google Scholar
Chen, L., Liu, P., Evans, T. C. & Ettwiller, L. M. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science355, 752–756 (2017). ArticleCASPubMed Google Scholar
Zook, J. M., Samarov, D., McDaniel, J., Sen, S. K. & Salit, M. Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing. PLoS ONE7, e41356 (2012). ArticleCASPubMedPubMed Central Google Scholar
White, G. H. & Farrance, I. Uncertainty of measurement in quantitative medical testing: a laboratory implementation guide. Clin. Biochem. Rev.25, S1–S24 (2004). CASPubMedPubMed Central Google Scholar
O'Rawe, J. et al. Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med.5, 28 (2013). ArticleCASPubMedPubMed Central Google Scholar
Reumers, J. et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat. Biotechnol.30, 61–68 (2012). ArticleCAS Google Scholar
Lam, H. Y. K. et al. Performance comparison of whole-genome sequencing platforms. Nat. Biotechnol.30, 78–82 (2012). ArticleCAS Google Scholar
Torsvik, A. et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med.3, 812–824 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol.32, 246–251 (2014). The Genome in a Bottle Consortium used a range of NGS technologies and analytical tools to characterize the NA12878 genome and to provide a set of high-confidence genotypes that can be used to benchmark germline variant-calling pipelines. ArticleCASPubMed Google Scholar
Eberle, M. A. et al. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome Res.27, 157–164 (2017). ArticleCASPubMedPubMed Central Google Scholar
Linderman, M. D. et al. Analytical validation of whole exome and whole genome sequencing for clinical applications. BMC Med. Genomics7, 20 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data3, 160025 (2016). ArticleCASPubMedPubMed Central Google Scholar
Seo, J.-S. et al. De novo assembly and phasing of a Korean human genome. Nature538, 243–247 (2016). ArticleCASPubMed Google Scholar
Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet.47, 435–444 (2015). ArticleCASPubMed Google Scholar
Cao, H. et al. De novo assembly of a haplotype-resolved human genome. Nat. Biotechnol.33, 617–622 (2015). ArticleCASPubMed Google Scholar
Besenbacher, S. et al. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat. Commun.6, 5969 (2015). ArticleCASPubMed Google Scholar
Kalman, L. V. et al. Development of a genomic DNA reference material panel for Rett syndrome (_MECP2_-related disorders) genetic testing. J. Mol. Diagn.16, 273–279 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kalman, L. et al. Development of a genomic DNA reference material panel for myotonic dystrophy type 1 (DM1) genetic testing. J. Mol. Diagn.15, 518–525 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kalman, L. et al. Development of genomic reference materials for Huntington disease genetic testing. Genet. Med.9, 719–723 (2007). ArticleCASPubMed Google Scholar
Pratt, V. M. et al. Characterization of 137 genomic DNA reference materials for 28 pharmacogenetic genes. J. Mol. Diagn.18, 109–123 (2016). This paper illustrates the process undertaken by GeT-RM to develop reference materials for genetic testing, including characterization by multiple laboratories and subsequent consensus verification of genotypes. ArticleCASPubMedPubMed Central Google Scholar
Pratt, V. M. et al. Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1: a GeT-RM and Association for Molecular Pathology collaborative project. J. Mol. Diagn.12, 835–846 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tsongalis, G. J. et al. Routine use of the Ion Torrent AmpliSeq™ Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clin. Chem. Lab. Med.52, 707 (2014). ArticleCASPubMed Google Scholar
Jarvis, M. et al. A novel method for creating artificial mutant samples for performance evaluation and quality control in clinical molecular genetics. J. Mol. Diagn.7, 247–251 (2005). ArticleCASPubMedPubMed Central Google Scholar
Griffith, M. et al. Optimizing cancer genome sequencing and analysis. Cell Syst.1, 210–223 (2015). This characterization of matched tumour and normal samples shows the requirement for deep sequencing to reveal the diversity of somatic mutations and subclonal populations, with the resulting data providing a useful resource for the bioinformatic analysis of tumour samples. ArticleCASPubMedPubMed Central Google Scholar
Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463, 191–196 (2010). ArticleCASPubMed Google Scholar
Zook, J. M. & Salit, M. Advancing benchmarks for genome sequencing. Cell Syst.1, 176–177 (2015). ArticleCASPubMed Google Scholar
SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol.32, 903–914 (2014). This is a comprehensive study of RNA-seq accuracy and reproducibility across multiple sequencing platforms and laboratory sites, using human reference RNA samples spiked with the ERCC controls.
't Hoen, P. A. C. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol.31, 1015–1022 (2013). ArticleCASPubMed Google Scholar
Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat. Biotechnol.32, 915–925 (2014). ArticleCASPubMedPubMed Central Google Scholar
White, H. E. et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood116, e111–e117 (2010). ArticleCASPubMed Google Scholar
Escobar-Zepeda, A., Vera-Ponce de León, A. & Sanchez-Flores, A. The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front. Genet.6, 348 (2015). ArticleCASPubMedPubMed Central Google Scholar
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature523, 208–211 (2015). ArticleCASPubMed Google Scholar
Olson, N. D. et al. Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Front. Genet.6, 235 (2015). ArticleCASPubMedPubMed Central Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol.18, 1403–1414 (2016). ArticleCASPubMed Google Scholar
The Human Microbiome Project Consortium. A framework for human microbiome research. Nature486, 215–221 (2012).
Jumpstart Consortium Human Microbiome Project Data Generation Working Group. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE7, e39315 (2012). The Human Microbiome Project developed a mock community of microbes commonly found on or in the human body, which has been used to benchmark metagenome sequencing and analysis.
Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality control project: baseline study design and future directions. Genome Biol.16, 276 (2015). ArticlePubMedPubMed Central Google Scholar
The External RNA Controls Consortium. The External RNA Controls Consortium: a progress report. Nat. Methods2, 731–734 (2005).
Sims, D. J. et al. Plasmid-based materials as multiplex quality controls and calibrators for clinical next-generation sequencing assays. J. Mol. Diagn.18, 336–349 (2016). ArticleCASPubMedPubMed Central Google Scholar
Quail, M. A. et al. SASI-Seq: sample assurance spike-ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genomics15, 110 (2014). ArticlePubMedPubMed Central Google Scholar
Strom, C. M. et al. Technical validation of a multiplex platform to detect thirty mutations in eight genetic diseases prevalent in individuals of Ashkenazi Jewish descent. Genet. Med.7, 633–639 (2005). ArticlePubMed Google Scholar
Deveson, I. W. et al. Representing genetic variation with synthetic DNA standards. Nat. Methods13, 784–791 (2016). This study presents a set of synthetic spike-in controls representing DNA variants (SNVs, indels and structural variants), which can function as qualitative and quantitative controls for genome sequencing. ArticleCASPubMed Google Scholar
Kudalkar, E. M. et al. Multiplexed reference materials as controls for diagnostic next-generation sequencing. J. Mol. Diagn.18, 882–889 (2016). ArticleCASPubMed Google Scholar
The External RNA Controls Consortium. Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics6, 150 (2005).
Cronin, M. et al. Universal RNA reference materials for gene expression. Clin. Chem.50, 1464–1471 (2004). ArticleCASPubMed Google Scholar
Hardwick, S. A. et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat. Methods13, 792–798 (2016). ArticleCASPubMed Google Scholar
Locati, M. D. et al. Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with a set for data normalization. Nucleic Acids Res.43, e89 (2015). ArticlePubMedPubMed Central Google Scholar
Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res.21, 1543–1551 (2011). This study used the ERCC controls to measure the sensitivity, dynamic range, quantitative accuracy and biases of RNA-seq experiments. ArticleCASPubMedPubMed Central Google Scholar
Munro, S. A. et al. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat. Commun.5, 5125 (2014). ArticleCASPubMed Google Scholar
Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet.16, 133–145 (2015). ArticleCASPubMed Google Scholar
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods10, 1093–1095 (2013). ArticleCASPubMed Google Scholar
Owens, N. D. L. et al. Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep.14, 632–647 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat. Methods12, 623–630 (2015). ArticleCASPubMedPubMed Central Google Scholar
Daber, R., Sukhadia, S. & Morrissette, J. J. D. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet.206, 441–448 (2014). ArticleCAS Google Scholar
Escalona, M., Rocha, S. & Posada, D. A comparison of tools for the simulation of genomic next-generation sequencing data. Nat. Rev. Genet.17, 459–469 (2016). ArticleCASPubMedPubMed Central Google Scholar
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017). ArticleCASPubMedPubMed Central Google Scholar
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.34, 525–527 (2016). ArticleCASPubMed Google Scholar
Sheridan, C. Milestone approval lifts Illumina's NGS from research into clinic. Nat. Biotechnol.32, 111–112 (2014). ArticleCASPubMed Google Scholar
Centers for Medicare and Medicaid Services. US Department of Health and Human Services. Part 493 — Laboratory Requirements: Clinical Laboratory Improvement Amendments of 1988. 42 CFR §493.1443–1495 https://www.cdc.gov/clia/Regulatory/default.aspx
Richards, C. S. & Grody, W. W. Alternative approaches to proficiency testing in molecular genetics. Clin. Chem.49, 717–718 (2003). ArticleCASPubMed Google Scholar
Schrijver, I. et al. Methods-based proficiency testing in molecular genetic pathology. J. Mol. Diagn.16, 283–287 (2014). ArticlePubMed Google Scholar
Richards, C. S., Palomaki, G. E., Lacbawan, F. L., Lyon, E. & Feldman, G. L. Three-year experience of a CAP/ACMG methods-based external proficiency testing program for laboratories offering DNA sequencing for rare inherited disorders. Genet. Med.16, 25–32 (2014). ArticlePubMed Google Scholar
Duncavage, E. J. et al. A model study of in silico proficiency testing for clinical next-generation sequencing. Arch. Pathol. Lab. Med.140, 1085–1091 (2016). ArticleCASPubMed Google Scholar
Tang, W., Hu, Z., Muallem, H. & Gulley, M. L. Quality assurance of RNA expression profiling in clinical laboratories. J. Mol. Diagn.14, 1–11 (2012). ArticleCASPubMedPubMed Central Google Scholar
Duncavage, E. J., Abel, H. J. & Pfeifer, J. D. In silico proficiency testing for clinical next-generation sequencing. J. Mol. Diagn.19, 35–42 (2017). ArticleCASPubMed Google Scholar
Davies, K. D. et al. Multi-institutional FASTQ file exchange as a means of proficiency testing for next-generation sequencing bioinformatics and variant interpretation. J. Mol. Diagn.18, 572–579 (2016). ArticleCASPubMed Google Scholar
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol.32, 896–902 (2014). These authors developed a normalization strategy for RNA-seq termed RUV (remove unwanted variation), which adjusts for nuisance technical effects between samples by performing factor analysis on suitable sets of control genes (for example, RNA spike-ins). ArticleCASPubMedPubMed Central Google Scholar
Zheng, G. X. Y. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol.34, 303–311 (2016). ArticleCASPubMedPubMed Central Google Scholar
Singh, R. R. et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn.15, 607–622 (2013). ArticleCASPubMed Google Scholar
Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet.12, 443–451 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol.31, 213–219 (2013). ArticleCASPubMedPubMed Central Google Scholar
Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE10, e0118432 (2015). ArticleCASPubMedPubMed Central Google Scholar
Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev.29, S49–S52 (2008). PubMedPubMed Central Google Scholar
Altman, N. & Krzywinski, M. Points of significance: simple linear regression. Nat. Methods12, 999–1000 (2015). ArticleCASPubMed Google Scholar
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol.11, R25 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome4, 28 (2016). ArticlePubMedPubMed Central Google Scholar