- Metzker, M. L. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46 (2010).
Article CAS PubMed Google Scholar
- Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Wang, X. V., Blades, N., Ding, J., Sultana, R. & Parmigiani, G. Estimation of sequencing error rates in short reads. BMC Bioinformatics 13, 185 (2012).
Article PubMed Google Scholar
- Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 1–11 (2012).
PubMed Google Scholar
- Holtgrewe, M. Mason — a read simulator for second generation sequencing data. http://publications.mi.fu-berlin.de/962 (FU Berlin, 2010).
- Angly, F. E., Willner, D., Rohwer, F., Hugenholtz, P. & Tyson, G. W. Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res. 40, e94 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012). This paper describes probably the most popular NGS simulator nowadays, with well-supported and detailed documentation.
Article PubMed CAS Google Scholar
- Hu, X. et al. pIRS: profile-based Illumina pair-end reads simulator. Bioinformatics 28, 1533–1535 (2012).
Article PubMed CAS Google Scholar
- Caboche, S., Audebert, C., Lemoine, Y. & Hot, D. Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data. BMC Genomics 15, 264 (2014).
Article PubMed PubMed Central Google Scholar
- Hoban, S., Bertorelle, G. & Gaggiotti, O. E. Computer simulations: tools for population and evolutionary genetics. Nat. Rev. Genet. 13, 110–122 (2012).
Article CAS PubMed Google Scholar
- Shendure, J. & Aiden, E. L. The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Shcherbina, A. FASTQSim: platform-independent data characterization and in silico read generation for NGS datasets. BMC Res. Notes 7, 533 (2014).
Article PubMed PubMed Central Google Scholar
- Knudsen, B., Forsberg, R. & Miyamoto, M. M. A computer simulator for assessing different challenges and strategies of de novo sequence assembly. Genes 1, 263–282 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat. Methods 4, 495–500 (2007). This paper describes the use of NGS simulations for benchmarking NGS analytical methods.
Article CAS PubMed Google Scholar
- McElroy, K. E., Luciani, F. & Thomas, T. GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics 13, 74 (2012).
Article PubMed PubMed Central Google Scholar
- Pattnaik, S., Gupta, S., Rao, A. A. & Panda, B. SInC: an accurate and fast error-model based simulator for SNPs, indels and CNVs coupled with a read generator for short-read sequence data. BMC Bioinformatics 15, 40 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).
Article CAS PubMed Google Scholar
- Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
Article CAS PubMed Google Scholar
- Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).
Article CAS PubMed Google Scholar
- Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).
Article CAS PubMed Google Scholar
- Quail, M. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Pratas, D., Pinho, A. J. & O. S. Rodrigues, J. M. XS: a FASTQ read simulator. BMC Res. Notes 7, 40 (2014).
Article PubMed PubMed Central Google Scholar
- Lee, H. et al. Error correction and assembly complexity of single molecule sequencing reads. bioRxiv http://dx.doi.org/10.1101/006395 (2014).
Google Scholar
- Earl, D. et al. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21, 2224–2241 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Johnson, S., Trost, B., Long, J. R., Pittet, V. & Kusalik, A. A better sequence-read simulator program for metagenomics. BMC Bioinformatics 15, S14 (2014).
Article PubMed PubMed Central Google Scholar
- Jia, B. et al. NeSSM: a next-generation sequencing simulator for metagenomics. PLoS ONE 8, e75448 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Article CAS PubMed Google Scholar
- Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).
Article CAS PubMed Google Scholar
- Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).
Article CAS PubMed Google Scholar
- Keegan, K. P. et al. A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE. PLoS Comput. Biol. 8, e1002541 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Frampton, M. & Houlston, R. Generation of artificial FASTQ files to evaluate the performance of next-generation sequencing pipelines. PLoS ONE 7, e49110 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).
Article CAS PubMed Google Scholar
- Morozova, O. & Marra, M. A. Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255–264 (2008).
Article CAS PubMed Google Scholar
- Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Balzer, S., Malde, K., Lanzén, A., Sharma, A. & Jonassen, I. Characteristics of 454 pyrosequencing data — enabling realistic simulation with flowsim. Bioinformatics 27, i420–i425 (2010). This paper presents one of the most popular simulators for 454 pyrosequencing long reads.
Article CAS Google Scholar
- Balzer, S., Malde, K. & Jonassen, I. Systematic exploration of error sources in pyrosequencing flowgram data. Bioinformatics 27, 304–309 (2011).
Article CAS Google Scholar
- Ledergerber, C. & Dessimoz, C. Base-calling for next-generation sequencing platforms. Brief. Bioinform. 12, 489–497 (2011).
Article PubMed PubMed Central Google Scholar
- Ewing, B. et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).
Article CAS PubMed Google Scholar
- Ewing, B. et al. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).
Article CAS PubMed Google Scholar
- Kao, W.-C., Stevens, K. & Song, Y. S. BayesCall: a model-based base-calling algorithm for high-throughput short-read sequencing. Genome Res. 19, 1884–1895 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Illumina. Technical note: Sequencing. Quality scores for next-generation sequencing: assessing sequencing accuracy using Phred quality scoring. Illumina http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf (2011).
- Dohm, J. C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008). This paper describes the most relevant biases that affect the generation of NGS data.
Article PubMed PubMed Central CAS Google Scholar
- Kircher, M. & Kelso, J. High-throughput DNA sequencing - concepts and limitations. BioEssays 32, 524–536 (2010).
Article CAS PubMed Google Scholar
- Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).
Article CAS PubMed Google Scholar
- Robasky, K., Lewis, N. E. & Church, G. M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Yang, X., Chockalingam, S. P. & Aluru, S. A survey of error-correction methods for next-generation sequencing. Brief. Bioinform. 14, 56–66 (2013).
Article CAS PubMed Google Scholar
- Ekblom, R., Smeds, L. & Ellegren, H. Patterns of sequencing coverage bias revealed by ultra-deep sequencing of vertebrate mitochondria. BMC Genomics 15, 467 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Ono, Y., Asai, K. & Hamada, M. PBSIM: PacBio reads simulator — toward accurate genome assembly. Bioinformatics 29, 119–121 (2013). This paper presents one of the most popular simulators for the PacBio sequencing platform.
Article CAS PubMed Google Scholar
- Richter, D. C., Ott, F., Auch, A. F., Schmid, R. & Huson, D. H. MetaSim — a sequencing simulator for genomics and metagenomics. PLoS ONE 3, e3373 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 39, e90 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Kwon, S., Park, S., Lee, B. & Yoon, S. In-depth analysis of interrelation between quality scores and real errors in Illumina reads. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 635–638 (2013).
Google Scholar
- Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988).
Article CAS PubMed Google Scholar
- Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132 (2014).
Article CAS PubMed Google Scholar
- Li, B. et al. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. 15, 553 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).
Article PubMed PubMed Central Google Scholar
- Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).
Article CAS PubMed Google Scholar
- Gilles, A. et al. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12, 245 (2011).
Article PubMed PubMed Central Google Scholar
- Quick, J., Quinlan, A. R. & Loman, N. J. A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. GigaScience 3, 22 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. bioRxiv http://dx.doi.org/10.1101/015552 (2015).
Google Scholar
- Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Laver, T. et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif. 3, 1–8 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Madoui, M.-A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Carneiro, M. O. et al. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13, 375 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Salmela, L. & Rivals, E. LoRDEC: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014).
Article CAS PubMed PubMed Central Google Scholar