Systematic genome-wide screens of gene function (original) (raw)
Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature402, 83–86 (1999). CASPubMed Google Scholar
Grunenfelder, B. & Winzeler, E. A. Treasures and traps in genome-wide data sets: case examples from yeast. Nature Rev. Genet.3, 653–661 (2002). PubMed Google Scholar
von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature417, 399–403 (2002). CASPubMed Google Scholar
Hammerle, M. et al. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem.273, 25000–25005 (1998). CASPubMed Google Scholar
Regelmann, J. et al. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol. Biol. Cell14, 1652–1663 (2003). CASPubMedPubMed Central Google Scholar
Snyder, M. & Gerstein, M. Genomics. Defining genes in the genomics era. Science300, 258–260 (2003). CASPubMed Google Scholar
Misra, S. et al. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol.3, RESEARCH0083 (2002).
Stein, L. Genome annotation: from sequence to biology. Nature Rev. Genet.2, 493–503 (2001). CASPubMed Google Scholar
Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature424, 797–801 (2003). CASPubMed Google Scholar
Heo, W. D. & Meyer, T. Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell113, 315–328 (2003). CASPubMed Google Scholar
Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol.162, 1003–1016 (2003). CASPubMedPubMed Central Google Scholar
Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol.162, 1079–1088 (2003). CASPubMedPubMed Central Google Scholar
Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Rev. Genet.3, 189–198 (2002). CASPubMed Google Scholar
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418, 387–391 (2002). Describes the construction of ∼6,000 yeast deletion strains, and a screen for proliferation under various growth conditions. CASPubMed Google Scholar
Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol.4, 457–467 (2003). CAS Google Scholar
Shi, Y. Mammalian RNAi for the masses. Trends Genet.19, 9–12 (2003). PubMed Google Scholar
McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet3, 737–747 (2002). CASPubMed Google Scholar
Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods30, 313–321 (2003). CASPubMed Google Scholar
Hutvagner, G. & Zamore, P. D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev.12, 225–232 (2002). CASPubMed Google Scholar
Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet24, 180–183 (2000). CASPubMed Google Scholar
Kanemaki, M., Sanchez-Diaz, A., Gambus, A. & Labib, K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature423, 720–724 (2003). CASPubMed Google Scholar
Geyer, C. R., Colman-Lerner, A. & Brent, R. 'Mutagenesis' by peptide aptamers identifies genetic network members and pathway connections. Proc. Natl Acad. Sci. USA96, 8567–8572 (1999). CASPubMedPubMed Central Google Scholar
Bishop, A. C., Buzko, O. & Shokat, K. M. Magic bullets for protein kinases. Trends Cell Biol.11, 167–172 (2001). CASPubMed Google Scholar
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). CASPubMed Google Scholar
Steinmetz, L. M. et al. Systematic screen for human disease genes in yeast. Nature Genet.31, 400–404 (2002). CASPubMed Google Scholar
Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature402, 413–418 (1999). CASPubMed Google Scholar
Deutschbauer, A. M., Williams, R. M., Chu, A. M. & Davis, R. W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA99, 15530–15535 (2002). CASPubMedPubMed Central Google Scholar
Dimmer, K. S. et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell13, 847–853 (2002). CASPubMedPubMed Central Google Scholar
Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature421, 63–66 (2003). ArticleCASPubMed Google Scholar
Birrell, G. W., Giaever, G., Chu, A. M., Davis, R. W. & Brown, J. M. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc. Natl Acad. Sci. USA98, 12608–12613 (2001). CASPubMedPubMed Central Google Scholar
Bennett, C. B. et al. Genes required for ionizing radiation resistance in yeast. Nature Genet.29, 426–434 (2001). CASPubMed Google Scholar
Game, J. C. et al. Use of a genome-wide approach to identify new genes that control resistance of Saccharomyces cerevisiae to ionizing radiation. Radiat. Res.160, 14–24 (2003). CASPubMed Google Scholar
Hanway, D. et al. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc. Natl Acad. Sci. USA99, 10605–10610 (2002). CASPubMedPubMed Central Google Scholar
Bianchi, M. M. et al. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes. Yeast18, 1397–1412 (2001). CASPubMed Google Scholar
Chan, T. F., Carvalho, J., Riles, L. & Zheng, X. F. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl Acad. Sci. USA97, 13227–13232 (2000). CASPubMedPubMed Central Google Scholar
Butcher, R. A. & Schreiber, S. L. A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae. Chem. Biol.10, 521–531 (2003). CASPubMed Google Scholar
Page, N. et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics163, 875–894 (2003). CASPubMedPubMed Central Google Scholar
Zewail, A. et al. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc. Natl Acad. Sci. USA100, 3345–3350 (2003). CASPubMedPubMed Central Google Scholar
Chang, M., Bellaoui, M., Boone, C. & Brown, G. W. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc. Natl Acad. Sci. USA99, 16934–16939 (2002). CASPubMedPubMed Central Google Scholar
Desmoucelles, C., Pinson, B., Saint-Marc, C. & Daignan-Fornier, B. Screening the yeast 'disruptome' for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J. Biol. Chem.277, 27036–27044 (2002). CASPubMed Google Scholar
Gupta, S. S. et al. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J. Biol. Chem.278, 28831–28839 (2003). CASPubMed Google Scholar
Anderson, J. B. et al. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics163, 1287–1298 (2003). CASPubMedPubMed Central Google Scholar
Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature421, 231–237 (2003). Describes the construction of a genome-wide collection of feedable, bacterially expressed dsRNA forC. elegans, and screening for classical phenotypes. This is the first genome-wide RNAi screen to be carried out in a multicellular organism. CASPubMed Google Scholar
Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature408, 325–330 (2000). CASPubMed Google Scholar
Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol.11, 171–176 (2001). CASPubMed Google Scholar
Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveall novel gene functions. PLOS Biology1, E12 (2003). PubMedPubMed Central Google Scholar
Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet.33, 40–48 (2003). CASPubMed Google Scholar
Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell12, 627–637 (2003). CASPubMed Google Scholar
Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science294, 2552–2556 (2001). CASPubMed Google Scholar
Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). Describes the first use of the synthetic genetic array strategy, in which a mutant of interest is crossed with all yeast deletion strains, allowing a genetic network to be constructed. CASPubMed Google Scholar
Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell Biol.23, 4207–4218 (2003). CASPubMedPubMed Central Google Scholar
Huang, D., Moffat, J. & Andrews, B. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol. Cell Biol.22, 5076–5088 (2002). CASPubMedPubMed Central Google Scholar
Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics143, 95–102 (1996). CASPubMedPubMed Central Google Scholar
Hartman, J. L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science291, 1001–1004 (2001). CASPubMed Google Scholar
Zhang, J. et al. Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr. Biol.12, 1992–2001 (2002). CASPubMed Google Scholar
Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science297, 395–400 (2002). CASPubMed Google Scholar
Wilson, W. A., Wang, Z. & Roach, P. J. Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol. Cell Proteomics1, 232–242 (2002). CASPubMed Google Scholar
Bonangelino, C. J., Chavez, E. M. & Bonifacino, J. S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell13, 2486–2501 (2002). CASPubMedPubMed Central Google Scholar
Felder, T. et al. Dtrlp, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot. Cell1, 799–810 (2002). CASPubMedPubMed Central Google Scholar
Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature425, 737–741 (2003). Reports the construction of ∼6,000 yeast strains that contain TAP epitope-tagged genes in their natural genomic location. Protein expression was detected by Western blot in ∼4,000 strains. CASPubMed Google Scholar
Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science299, 2039–2045 (2003). Reports the screening by dsRNA against ∼43% of theDrosophilagenome using a reporter assay. CASPubMed Google Scholar
Chanda, S. K. et al. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl Acad. Sci. USA100, 12153–12158 (2003). CASPubMedPubMed Central Google Scholar
Iourgenko, V. et al. Identification of a family of cAMP response element-binding protein co-activators by genome-scale functional analysis in mammalian cells. Proc. Natl Acad. Sci. USA100, 12147–12152 (2003). CASPubMedPubMed Central Google Scholar
Conkright, M. D. et al. TORCs: transducers of regulated CREB activity. Mol. Cell12, 413–423 (2003). CASPubMed Google Scholar
Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev.17, 443–448 (2003). CASPubMedPubMed Central Google Scholar
Vastenhouw, N. L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol.13, 1311–1316 (2003). CASPubMed Google Scholar
Ni, L. & Snyder, M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol. Biol. Cell12, 2147–2170 (2001). CASPubMedPubMed Central Google Scholar
Chen, C. et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nature Biotechnol.21, 294–301 (2003). CAS Google Scholar
Fiscella, M. et al. TIP, a T-cell factor identified using high-throughput screening increases survival in a graft-versus-host disease model. Nature Biotechnol.21, 302–307 (2003). CAS Google Scholar
Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature411, 107–110 (2001). CASPubMed Google Scholar
Kumar, R., Conklin, D. S. & Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res.13, 2333–2340 (2003). CASPubMedPubMed Central Google Scholar
Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen4, 67–73 (1999). CASPubMed Google Scholar
Le Bot, N., Tsai, M. C., Andrews, R. K. & Ahringer, J. TAC-1, a regulator of microtubule length in the C. elegans embryo. Curr. Biol.13, 1499–1505 (2003). CASPubMed Google Scholar
Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science295, 1664–1669 (2002). CASPubMed Google Scholar
Greenspan, R. J. The flexible genome. Nature Rev. Genet.2, 383–387 (2001). CASPubMed Google Scholar
Bader, G. D. et al. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol.13, 344–356 (2003). CASPubMed Google Scholar
Vidal, M. A biological atlas of functional maps. Cell104, 333–339 (2001). CASPubMed Google Scholar
Michiels, F. et al. Arrayed adenoviral expression libraries for functional screening. Nature Biotechnol.20, 1154–1157 (2002). CAS Google Scholar
Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev.17, 1340–1345 (2003). CASPubMedPubMed Central Google Scholar
Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet.33, 401–406 (2003). CASPubMed Google Scholar
Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet.33, 396–400 (2003). CASPubMed Google Scholar
Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell9, 1327–1333 (2002). CASPubMed Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). CASPubMed Google Scholar
Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol.21, 635–637 (2003). CAS Google Scholar
Feinberg, E. H. & Hunter, C. P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science301, 1545–1547 (2003). CASPubMed Google Scholar
Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature408, 331–336 (2000). CASPubMed Google Scholar
Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol.2, RESEARCH0002 (2001).
Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K. Informatics and quantitative analysis in biological imaging. Science300, 100–102 (2003). CASPubMedPubMed Central Google Scholar
Issel-Tarver, L. et al. Saccharomyces genome database. Methods Enzymol.350, 329–346 (2002). CASPubMed Google Scholar
Enyenihi, A. H. & Saunders, W. S. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics163, 47–54 (2003). CASPubMedPubMed Central Google Scholar
Zettel, M. F. et al. The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression. FEMS Microbiol. Lett.223, 253–258 (2003). CASPubMed Google Scholar
Wiederkehr, A., Meier, K. D. & Riezman, H. Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast18, 759–773 (2001). CASPubMed Google Scholar
Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature425, 686–691 (2003). Reports the construction of ∼6,000 yeast strains that contain GFP-tagged genes in their natural genomic location. The localization of tagged product was detected by fluorescence microscopy in ∼4,000 strains. CASPubMed Google Scholar
Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature421, 268–272 (2003). CASPubMed Google Scholar
Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nature Genet.34, 35–41 (2003). PubMed Google Scholar
Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science301, 653–657 (2003). Insertional mutants in ∼75% ofArabidopsisgenes were made, although the entire set was not screened. PubMed Google Scholar
Beckers, J. & Hrabe de Angelis, M. Large-scale mutational analysis for the annotation of the mouse genome. Curr. Opin. Chem. Biol.6, 17–23 (2002). CASPubMed Google Scholar