Wassarman, K. M., Zhang, A. & Storz, G. Small RNAs in Escherichia coli. Trends Microbiol.7, 37–45 (1999). ArticleCASPubMed Google Scholar
Argaman, L. et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol.11, 941–950 (2001). ArticleCASPubMed Google Scholar
Klein, R. J., Misulovin, Z. & Eddy, S. R. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl Acad. Sci. USA99, 7542–7547 (2002). ArticleCASPubMedPubMed Central Google Scholar
Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature424, 147–151 (2003). ArticleCASPubMed Google Scholar
Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA100, 5136–5141 (2003). ArticleCASPubMedPubMed Central Google Scholar
Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562 (2002).
Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science297, 1301–1310 (2002). ArticleCASPubMed Google Scholar
Harrison, P. M. et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res.12, 272–280 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mattick, J. S. & Gagen, M. J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol.18, 1611–1630 (2001). ArticleCASPubMed Google Scholar
Mattick, J. S. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays25, 930–939 (2003). ArticleCASPubMed Google Scholar
Dennett, D. Darwin's Dangerous Idea: Evolution and the Meanings of Life (Simon Schuster, New York, 1995). Google Scholar
Li, M. & Vitanyi, P. M. B. An Introduction to Kolmogorov Complexity and its Applications 2nd edn (Springer, New York, 1997). Book Google Scholar
Croft, L. J., Lercher, M. J., Gagen, M. J. & Mattick, J. S. Is prokaryotic complexity limited by accelerated growth in regulatory overhead? Genome Biol. Preprint Depository [online], <http://genomebiology.com/qc/2003/5/1/p2> (2003).
Gagen, M. J. & Mattick, J. S. Inherent size constraints on prokaryote gene networks due to 'accelerating' growth. arXiv Preprint Archive [online], <http://arXiv.org/abs/q-bio.MN/0312021> (2004).
Gagen, M. J. & Mattick, J. S. Failed 'nonaccelerating' models of prokaryote gene regulatory networks. arXiv Preprint Archive [online], <http://arXiv.org/abs/q-bio.MN/0312022> (2004).
Tycowski, K. T., Shu, M. D. & Steitz, J. A. A mammalian gene with introns instead of exons generating stable RNA products. Nature379, 464–466 (1996). ArticleCASPubMed Google Scholar
Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell109, 145–148 (2002). ArticleCASPubMed Google Scholar
Bachellerie, J. P., Cavaille, J. & Huttenhofer, A. The expanding snoRNA world. Biochimie84, 775–790 (2002). ArticleCASPubMed Google Scholar
Sutherland, H. F. et al. Identification of a novel transcript disrupted by a balanced translocation associated with DiGeorge syndrome. Am. J. Hum. Genet.59, 23–31 (1996). CASPubMedPubMed Central Google Scholar
Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res.59, 5975–5979 (1999). CASPubMed Google Scholar
Raho, G., Barone, V., Rossi, D., Philipson, L. & Sorrentino, V. The gas 5 gene shows four alternative splicing patterns without coding for a protein. Gene256, 13–17 (2000). ArticleCASPubMed Google Scholar
Charlier, C. et al. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res.11, 850–862 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wolf, S. et al. B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions. Hum. Mol. Genet.10, 1275–1285 (2001). ArticleCASPubMed Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCASPubMed Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev.11, 2494–2509 (1997). ArticleCASPubMedPubMed Central Google Scholar
Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein–RNA interaction modules. Nature407, 405–409 (2000). ArticleCASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ArticleCASPubMed Google Scholar
Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002). ArticleCASPubMed Google Scholar
Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science295, 1664–1669 (2002). ArticleCASPubMed Google Scholar
Shabalina, S. A., Ogurtsov, A. Y., Kondrashov, V. A. & Kondrashov, A. S. Selective constraint in intergenic regions of human and mouse genomes. Trends Genet.17, 373–376 (2001). ArticleCASPubMed Google Scholar
Kirkness, E. F. et al. The dog genome: survey sequencing and comparative analysis. Science301, 1898–1903 (2003). ArticlePubMed Google Scholar
Thomas, J. W. et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature424, 788–793 (2003). ArticleCASPubMed Google Scholar
Frazer, K. A. et al. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res.14, 367–372 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ridanpaa, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell104, 195–203 (2001). ArticleCASPubMed Google Scholar
Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature413, 432–435 (2001). ArticleCASPubMed Google Scholar
Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene22, 6087–6097 (2003). ArticleCAS Google Scholar
Numata, K. et al. Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res.13, 1301–1306 (2003). ArticleCASPubMedPubMed Central Google Scholar
Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature420, 563–573 (2002). ArticlePubMed Google Scholar
Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res.13, 1324–1334 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nature Biotechnol.21, 379–386 (2003). ArticleCAS Google Scholar
Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genet.34, 157–165 (2003). ArticleCASPubMed Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002). ArticleCASPubMed Google Scholar
Andersen, A. A. & Panning, B. Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol.15, 281–289 (2003). ArticleCASPubMed Google Scholar
Kiyosawa, H. & Abe, K. Speculations on the role of natural antisense transcripts in mammalian X chromosome evolution. Cytogenet. Genome Res.99, 151–156 (2002). ArticleCASPubMed Google Scholar
Hirotsune, S. et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature423, 91–96 (2003). ArticleCASPubMed Google Scholar
Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science301, 336–338 (2003). ArticleCASPubMed Google Scholar
Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature425, 257–263 (2003). ArticleCASPubMed Google Scholar
Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA100, 193–198 (2003). ArticleCASPubMed Google Scholar
Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res.11, 137–146 (2003). ArticleCASPubMed Google Scholar
Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell110, 689–699 (2002). ArticleCASPubMed Google Scholar
Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosom. Cancer39, 167–169 (2004). ArticleCASPubMed Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). ArticleCASPubMed Google Scholar
Llave, C., Kasschau, K. D., Rector, M. A. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell14, 1605–1619 (2002). ArticleCASPubMedPubMed Central Google Scholar
Georges, M., Charlier, C. & Cockett, N. The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet.19, 248–252 (2003). ArticleCASPubMed Google Scholar
Van Laere, A. S. et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature425, 832–836 (2003). ArticleCASPubMed Google Scholar
Drewell, R. A., Bae, E., Burr, J. & Lewis, E. B. Transcription defines the embryonic domains of _cis_-regulatory activity at the Drosophila bithorax complex. Proc. Natl Acad. Sci. USA99, 16853–16858 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rank, G., Prestel, M. & Paro, R. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol. Cell Biol.22, 8026–8034 (2002). ArticleCASPubMedPubMed Central Google Scholar
Toulme, J. J., Di Primo, C. & Moreau, S. Modulation of RNA function by oligonucleotides recognizing RNA structure. Prog. Nucleic Acid Res. Mol. Biol.69, 1–46 (2001). ArticleCASPubMed Google Scholar
Vasquez, K. M. & Glazer, P. M. Triplex-forming oligonucleotides: principles and applications. Q. Rev. Biophys.35, 89–107 (2002). ArticleCASPubMed Google Scholar
Sczyrba, A., Kruger, J., Mersch, H., Kurtz, S. & Giegerich, R. RNA-related tools on the Bielefeld Bioinformatics Server. Nucleic Acids Res.31, 3767–3770 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sadakane, K. & Shibuya, T. Indexing huge genome sequences for solving various problems. Genome Inform. Ser. Workshop Genome Inform.12, 175–183 (2001). CAS Google Scholar
Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol.3, 318–356 (1961). ArticleCASPubMed Google Scholar
Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science165, 349–357 (1969). ArticleCASPubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). ArticleCASPubMed Google Scholar
Lynch, M. & Richardson, A. O. The evolution of spliceosomal introns. Curr. Opin. Genet. Dev.12, 701–710 (2002). ArticleCASPubMed Google Scholar
Taft, R. J. & Mattick, J. S. Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. arXiv Preprint Archive [online], <http://www.arxiv.org/abs/q-bio.GN/0401020> (2003).
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116, 499–509 (2004). ArticleCASPubMed Google Scholar
Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res.14, 331–342 (2004). ArticleCASPubMedPubMed Central Google Scholar