Genome-wide association studies: theoretical and practical concerns (original) (raw)
Ioannidis, J. P., Trikalinos, T. A., Ntzani, E. E. & Contopoulos-Ioannidis, D. G. Genetic associations in large versus small studies: an empirical assessment. Lancet361, 567–571 (2003). PubMed Google Scholar
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet.33, 177–182 (2003). CASPubMed Google Scholar
Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet.6, 95–108 (2005). A review of the issues that are involved in the design of large-scale association mapping, including marker selection and sources of false-positive and false-negative results. CASPubMed Google Scholar
Livak, K. J., Marmaro, J. & Todd, J. A. Towards fully automated genome-wide polymorphism screening. Nature Genet.9, 341–342 (1995). CASPubMed Google Scholar
Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science294, 1719–1723 (2001). CASPubMed Google Scholar
Syvanen, A. C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Rev. Genet.2, 930–942 (2001). CASPubMed Google Scholar
Miller, R. D., Duan, S., Lovins, E. G., Kloss, E. F. & Kwok, P. Y. Efficient high-throughput resequencing of genomic DNA. Genome Res.13, 717–720 (2003). CASPubMedPubMed Central Google Scholar
Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nature Biotechnol.21, 673–678 (2003). CAS Google Scholar
Blangero, J. Localization and identification of human quantitative trait loci: King Harvest has surely come. Curr. Opin. Genet. Dev.14, 233–240 (2004). CASPubMed Google Scholar
Terwilliger, J. D. & Weiss, K. M. Confounding, ascertainment bias, and the blind quest for a genetic 'fountain of youth'. Ann. Med.35, 532–544 (2003). PubMed Google Scholar
Wang, W. Y., Cordell, H. J. & Todd, J. A. Association mapping of complex diseases in linked regions: estimation of genetic effects and feasibility of testing rare variants. Genet. Epidemiol.24, 36–43 (2003). CASPubMed Google Scholar
Stefansson, H., Steinthorsdottir, V., Thorgeirsson, T. E., Gulcher, J. R. & Stefansson, K. Neuregulin 1 and schizophrenia. Ann. Med.36, 62–71 (2004). CASPubMed Google Scholar
Altmuller, J., Palmer, L. J., Fischer, G., Scherb, H. & Wjst, M. Genomewide scans of complex human diseases: true linkage is hard to find. Am. J. Hum. Genet.69, 936–950 (2001). This is an analyses of 101 linkage studies. It demonstrates the difficulties in achieving significant linkage, and argues for a need for larger sample sizes. CASPubMedPubMed Central Google Scholar
Neale, B. M. & Sham, P. C. The future of association studies: gene-based analysis and replication. Am. J. Hum. Genet.75, 353–362 (2004). A review of the design of association-mapping strategies. It argues for changing the focus from SNPs to genomic regions, and outlines strategies to achieve this. CASPubMedPubMed Central Google Scholar
Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science296, 2225–2229 (2002). CASPubMed Google Scholar
Dawson, E. et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature418, 544–548 (2002). CASPubMed Google Scholar
International HapMap Consortium. The International HapMap Project. Nature426, 789–796 (2003). This paper outlines the International HapMap Project, which is currently in progress, and will provide SNP maps, LD information and tag SNPs throughout the genome for different human populations.
McVean, G. A. et al. The fine-scale structure of recombination rate variation in the human genome. Science304, 581–584 (2004). CASPubMed Google Scholar
Johnson, G. C. et al. Haplotype tagging for the identification of common disease genes. Nature Genet.29, 233–237 (2001). The authors introduce the concept of tag SNPs based on LD to minimize laboratory effort for SNP genotyping in association analyses. CASPubMed Google Scholar
Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet.17, 502–510 (2001). CASPubMed Google Scholar
Pritchard, J. K. & Cox, N. J. The allelic architecture of human disease genes: common disease–common variant...or not? Hum. Mol. Genet.11, 2417–2423 (2002). CASPubMed Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). This paper showed in explicit terms the greater power of whole-genome association studies over affected sib-pair linkage for the mapping of common diseases. CASPubMed Google Scholar
Dahlman, I. et al. Parameters for reliable results in genetic association studies in common disease. Nature Genet.30, 149–150 (2002). CASPubMed Google Scholar
Freimer, N. & Sabatti, C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nature Genet.36, 1045–1051 (2004). A clear and unbiased review of the main current genetic mapping strategies that discusses analyses using extended pedigrees, affected sib-pairs and association. CASPubMed Google Scholar
Lowe, C. E. et al. Cost-effective analysis of candidate genes using htSNPs: a staged approach. Genes Immun.5, 301–305 (2004). CASPubMed Google Scholar
Smith, D. J. & Lusis, A. J. The allelic structure of common disease. Hum. Mol. Genet.11, 2455–2461 (2002). CASPubMed Google Scholar
Fisher, R. A. Correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb.52, 399–433 (1918). Google Scholar
Risch, N. The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol. Biomarkers Prev.10, 733–741 (2001). CASPubMed Google Scholar
Hirschhorn, J. N. et al. Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am. J. Hum. Genet.69, 106–116 (2001). CASPubMedPubMed Central Google Scholar
Rich, S. S. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes39, 1315–1319 (1990). CASPubMed Google Scholar
Pritchard, J. K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet.69, 124–137 (2001). CASPubMedPubMed Central Google Scholar
Todd, J. A. Human genetics. Tackling common disease. Nature411, 537–539 (2001). CASPubMed Google Scholar
Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science305, 869–872 (2004). CASPubMed Google Scholar
Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science261, 921–923 (1993). CASPubMed Google Scholar
Bell, G. I., Horita, S. & Karam, J. H. A polymorphic locus near the human insulin gene is associated with insulin-dependent Diabetes mellitus. Diabetes33, 176–183 (1984). CASPubMed Google Scholar
Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423, 506–511 (2003). CASPubMed Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603. (2001). CASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). CASPubMed Google Scholar
Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res.9, 720–731 (1999). CASPubMedPubMed Central Google Scholar
Wang, W. Y. & Pike, N. The allelic spectra of common diseases may resemble the allelic spectrum of the full genome. Med. Hypotheses63, 748–751 (2004). CASPubMed Google Scholar
Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet.27, 234–236 (2001). Using a neutral coalescence model, this article estimates the frequency distribution of SNPs in the human genome. CASPubMed Google Scholar
Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nature Genet.33, 228–237 (2003). CASPubMed Google Scholar
Clark, A. G. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Curr. Opin. Genet. Dev.13, 296–302 (2003). CASPubMed Google Scholar
Neel, J. V. Diabetes mellitus: a 'thrifty' genotype rendered detrimental by 'progress'? Am. J. Hum. Genet.14, 353–362 (1962). CASPubMedPubMed Central Google Scholar
Carlson, C. S. et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nature Genet.33, 518–521 (2003). CASPubMed Google Scholar
Nezer, C. et al. Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics165, 227–285 (2003). Google Scholar
Vyse, T. J. & Todd, J. A. Genetic analysis of autoimmune disease. Cell85, 311–318 (1996). CASPubMed Google Scholar
Robertson, A. in Population Biology and Evolution (ed. Lewontin, R. C.) 265–280 (Syracuse Univ. Press, New York, 1967). Google Scholar
Paterson, A. H. et al. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics127, 181–197 (1991). CASPubMedPubMed Central Google Scholar
Mackay, T. F., Lyman, R. F. & Jackson, M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics130, 315–332 (1992). CASPubMedPubMed Central Google Scholar
Hayes, B. & Goddard, M. E. The distribution of the effects of genes affecting quantitative traits in livestock. Genet. Sel. Evol.33, 209–229 (2001). CASPubMedPubMed Central Google Scholar
Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet.3, 11–21 (2002). CASPubMed Google Scholar
Wright, A., Charlesworth, B., Rudan, I., Carothers, A. & Campbell, H. A polygenic basis for late-onset disease. Trends Genet.19, 97–106 (2003). CASPubMed Google Scholar
Risch, N., Ghosh, S. & Todd, J. A. Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent Diabetes mellitus (IDDM). Am. J. Hum. Genet.53, 702–714 (1993). CASPubMedPubMed Central Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930). Google Scholar
Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution52, 935–949 (1998). PubMed Google Scholar
Pagani, F. & Baralle, F. E. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Rev. Genet.5, 389–396 (2004). CASPubMed Google Scholar
Hoogendoorn, B. et al. Functional analysis of human promoter polymorphisms. Hum. Mol. Genet.12, 2249–2254 (2003). CASPubMed Google Scholar
Lo, H. S. et al. Allelic variation in gene expression is common in the human genome. Genome Res.13, 1855–1862 (2003). CASPubMedPubMed Central Google Scholar
Mira, M. T. et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature427, 636–640 (2004). CASPubMed Google Scholar
Kleinjan, D. A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet.76, 8–32 (2005). CASPubMed Google Scholar
Rybicki, B. A. & Elston, R. C. The relationship between the sibling recurrence-risk ratio and genotype relative risk. Am. J. Hum. Genet.66, 593–604 (2000). CASPubMedPubMed Central Google Scholar
Jorde, L. B. Linkage disequilibrium and the search for complex disease genes. Genome Res.10, 1435–1444 (2000). CASPubMed Google Scholar
Sham, P. C., Cherny, S. S., Purcell, S. & Hewitt, J. K. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am. J. Hum. Genet.66, 1616–1630 (2000). CASPubMedPubMed Central Google Scholar
Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet.69, 1–14 (2001). CASPubMedPubMed Central Google Scholar
Chapman, J. M., Cooper, J. D., Todd, J. A. & Clayton, D. G. Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Hered.56, 18–31 (2003). This paper examines analyses of tag SNPs and suggests that it might be best to discard haplotype information and consider only the main effects of tag SNPs to avoid losing power owing to increased degrees of freedom. PubMed Google Scholar
Wang, W. Y. & Todd, J. A. The usefulness of different density SNP maps for disease association studies of common variants. Hum. Mol. Genet.12, 3145–3149 (2003). Based on sampling simulations of published, near-complete SNP maps, this study assesses the usefulness of different density SNP maps for LD mapping. CASPubMed Google Scholar
Ke, X. et al. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum. Mol. Genet.13, 577–588 (2004). CASPubMed Google Scholar
Clayton, D., Chapman, J. & Cooper, J. Use of unphased multilocus genotype data in indirect association studies. Genet. Epidemiol.27, 415–428 (2004). PubMed Google Scholar
Nejentsev, S. et al. Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Hum. Mol. Genet.13, 1633–1639 (2004). CASPubMed Google Scholar
Jeffreys, A. J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet.29, 217–222 (2001). CASPubMed Google Scholar
Twells, R. C. et al. Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res.13, 845–855 (2003). CASPubMedPubMed Central Google Scholar
Jeffreys, A. J. & May, C. A. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nature Genet.36, 151–156 (2004). CASPubMed Google Scholar
Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet.4, 587–597 (2003). CASPubMed Google Scholar
Pask, R. et al. Investigating the utility of combining Φ29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray genotyping. BMC Biotechnol.4, 15 (2004). PubMedPubMed Central Google Scholar
Cordell, H. J. & Clayton, D. G. Genetic association studies. Lancet (in the press).
Carlson, C. S. et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet.74, 106–120 (2004). CASPubMed Google Scholar
Ke, X. et al. Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples. Hum. Mol. Genet.13, 2557–2565 (2004). CASPubMed Google Scholar
Bateson, W. Mendel's Principles of Heredity (Cambridge Univ. Press, Cambridge, 1909). Google Scholar
Thompson, W. D. Effect modification and the limits of biological inference from epidemiologic data. J. Clin. Epidemiol.44, 221–232 (1991). CASPubMed Google Scholar
Cordell, H. J. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum. Mol. Genet.11, 2463–2468 (2002). CASPubMed Google Scholar
Culverhouse, R., Suarez, B. K., Lin, J. & Reich, T. A perspective on epistasis: limits of models displaying no main effect. Am. J. Hum. Genet.70, 461–471 (2002). PubMedPubMed Central Google Scholar
Thornton-Wells, T. A., Moore, J. H. & Haines, J. L. Genetics, statistics and human disease: analytical retooling for complexity. Trends. Genet.20, 640–647 (2004). CASPubMed Google Scholar
Hoh, J. & Ott, J. Mathematical multi-locus approaches to localizing complex human trait genes. Nature Rev. Genet.4, 701–709 (2003). CASPubMed Google Scholar
Clayton, D. & McKeigue, P. M. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet358, 1356–1360 (2001). CASPubMed Google Scholar
Pato, C. N., Macciardi, F., Pato, M. T., Verga, M. & Kennedy, J. L. Review of the putative association of dopamine D2 receptor and alcoholism: a meta-analysis. Am. J. Med. Genet.48, 78–82 (1993). CASPubMed Google Scholar
Freedman, M. L. et al. Assessing the impact of population stratification on genetic association studies. Nature Genet.36, 388–393 (2004). CASPubMed Google Scholar
Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nature Genet.36, 512–517 (2004). CASPubMed Google Scholar
Pritchard, J. K. & Rosenberg, N. A. Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet.65, 220–228 (1999). CASPubMedPubMed Central Google Scholar
Hoggart, C. J. et al. Control of confounding of genetic associations in stratified populations. Am. J. Hum. Genet.72, 1492–1504 (2003). CASPubMedPubMed Central Google Scholar
Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. Reply to 'Genomic control to the extreme'. Nature Genet.36, 1131 (2004). CAS Google Scholar
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics55, 997–1004 (1999). CASPubMed Google Scholar
Doll, R. & Hill, A. B. The mortality of doctors in relation to their smoking habits. BMJ228, 1451–1455 (1954). Google Scholar
Doll, R. Retrospective and Prospective Studies (ed. Witts, L. J.) (Oxford Univ. Press, London, 1959). Google Scholar
Devlin, B. & Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics29, 311–322 (1995). CASPubMed Google Scholar
Lewontin, R. C. & Kojima, K. The evolutionary dynamics of complex polymorphisms. Evolution14, 458–472 (1960). Google Scholar
Lewontin, R. C. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics49, 49–67 (1964). CASPubMedPubMed Central Google Scholar
Hill, W. G. & Robertson, A. The effects of inbreeding at loci with heterozygote advantage. Genetics60, 615–628 (1968). CASPubMedPubMed Central Google Scholar
Weiss, K. M. & Clark, A. G. Linkage disequilibrium and the mapping of complex human traits. Trends Genet.18, 19–24 (2002). CASPubMed Google Scholar
Thompson, D., Stram, D., Goldgar, D. & Witte, J. S. Haplotype tagging single nucleotide polymorphisms and association studies. Hum. Hered.56, 48–55 (2003). PubMed Google Scholar
Wall, J. D. & Pritchard, J. K. Assessing the performance of the haplotype block model of linkage disequilibrium. Am. J. Hum. Genet.73, 502–515 (2003). A review on haplotype blocks and LD in the human genome. CASPubMedPubMed Central Google Scholar
Thomas, D. C. & Clayton, D. G. Betting odds and genetic associations. J. Natl Cancer Inst.96, 421–423 (2004). PubMed Google Scholar
Wacholder, S. et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl Cancer Inst.96, 434–442 (2004). PubMedPubMed Central Google Scholar