Zdravkovic, S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20,966 Swedish twins. J. Intern. Med.252, 247–254 (2002). ArticleCASPubMed Google Scholar
Wright, A., Charlesworth, B., Rudan, I., Carothers, A. & Campbell, H. A polygenic basis for late-onset disease. Trends Genet.19, 97–106 (2003). ArticleCASPubMed Google Scholar
Myers, R. H., Kiely, D. K., Cupples, L. A. & Kannel, W. B. Parental history is an independent risk factor for coronary artery disease:the Framingham study. Am. Heart J.120, 963–969 (1990). ArticleCASPubMed Google Scholar
Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation97, 1837–1847 (1998). ArticleCASPubMed Google Scholar
Lloyd-Jones, D. M. et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA291, 2204–2211 (2004). ArticleCASPubMed Google Scholar
Assmann, G., Cullen, P. & Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation105, 310–315 (2002). ArticlePubMed Google Scholar
Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet364, 937–952 (2004). ArticlePubMed Google Scholar
Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet.26, 151–157 (2000). ArticleCASPubMed Google Scholar
Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science305, 869–872 (2004). ArticleCASPubMed Google Scholar
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet.33, 177–182 (2003). ArticleCASPubMed Google Scholar
Wang, L., Fan, C., Topol, S. E., Topol, E. J. & Wang, Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science302, 1578–1581 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bhagavatula, M. R. et al. Transcription factor MEF2A mutations in patients with coronary artery disease. Hum. Mol. Genet.13, 3181–3188 (2004). ArticleCASPubMed Google Scholar
Gonzalez, P. et al. The Pro279Leu variant in the transcription factor MEF2A is associated with myocardial infarction. J. Med. Genet. 15 Jun 2005 [epub ahead of print].
Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genet.36, 233–239 (2004). A landmark positional cloning study, as it was the first to use linkage, linkage-disequilibrium mapping and functional studies to identify a CAD-susceptibility gene. ArticleCASPubMed Google Scholar
Spanbroek, R. et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl Acad. Sci. USA100, 1238–1243 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mehrabian, M. et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ. Res.91, 120–126 (2002). ArticleCASPubMed Google Scholar
Aiello, R. J. et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol.22, 443–449 (2001). ArticleCAS Google Scholar
Dwyer, J. H. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med.350, 29–37 (2004). ArticleCASPubMed Google Scholar
Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med.350, 1387–1397 (2004). ArticleCASPubMed Google Scholar
Paul, A. et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation109, 647–655 (2004). ArticleCASPubMed Google Scholar
Fletcher, L. Genomics companies shop around for chemical expertise. Nature Biotechnol.22, 137–138 (2004). ArticleCAS Google Scholar
Broeckel, U. et al. A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nature Genet.30, 210–214 (2002). ArticleCASPubMed Google Scholar
Wang, Q et al. Premature myocardial infarction novel susceptibility locus on chromosome 1P34–36 identified by genomewide linkage analysis. Am. J. Hum. Genet.74, 262–271 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hauser, E. R. et al. A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD Study. Am. J. Hum. Genet.75, 436–447 (2004). ArticleCASPubMedPubMed Central Google Scholar
Harrap, S. B. et al. Genome-wide linkage analysis of the acute coronary syndrome suggests a locus on chromosome 2. Arterioscler. Thromb. Vasc. Biol.22, 874–878 (2002). ArticleCASPubMed Google Scholar
Chiodini, B. D. & Lewis, C. M. Meta-analysis of 4 coronary heart disease genome-wide linkage studies confirms a susceptibility locus on chromosome 3q. Arterioscler. Thromb. Vasc. Biol.23, 1863–1868 (2003). ArticleCASPubMed Google Scholar
Campbell, L. A. & Kuo, C. C. Chlamydia pneumoniae — an infectious risk factor for atherosclerosis? Nature Rev. Microbiol.2, 23–32 (2004). ArticleCAS Google Scholar
LeVan, T. D. et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J. Immunol.167, 5838–5844 (2001). ArticleCASPubMed Google Scholar
Arroyo-Espliguero, R., Avanzas, P., Jeffery, S. & Kaski, J. C. CD14 and toll-like receptor 4: a link between infection and acute coronary events? Heart90, 983–988 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pasterkamp, G. J., van Keulen, K. & de Kleijn, D. P. V. Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur. J. Clin. Invest.34, 328–334 (2004). ArticleCASPubMed Google Scholar
Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.47, 185–192 (2002). Article Google Scholar
Ameziane, N. et al. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler. Thromb. Vasc. Biol.23, e61–e64 (2003). ArticlePubMedCAS Google Scholar
Boekholdt, S. M. et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation107, 2416–2132 (2003). ArticleCASPubMed Google Scholar
Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA.101, 10679–10684 (2004). ArticleCASPubMedPubMed Central Google Scholar
Edfeldt, K. et al. Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. Eur. Heart J.25, 1447–1453 (2004). ArticleCASPubMed Google Scholar
Yang, I. A., Holloway, J. W. & Ye, S. TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis170, 187–190 (2003). ArticleCASPubMed Google Scholar
Colhoun, H. M., McKeigue, P. M. & Davey Smith, G. Problems of reporting genetic associations with complex outcomes. Lancet361, 865–872 (2003). ArticlePubMed Google Scholar
Keavney, B. et al. Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. International Studies of Infarct Survival (ISIS) Collaborators. Lancet355, 434–442 (2000). ArticleCASPubMed Google Scholar
Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet.6, 95–108 (2005). ArticleCASPubMed Google Scholar
Farrall, M. & Morris, A. P. Gearing up for genome-wide gene-association studies. Hum. Mol. Genet.14 (Suppl. 2), R157–R162 (2005). ArticleCASPubMed Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). ArticleCASPubMed Google Scholar
Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nature Genet.32, 650–654 (2002). A pioneering genome-scale gene-association study for susceptibility to myocardial infarction that identified causal variants in theLTAgene. ArticleCASPubMed Google Scholar
Iwanaga, Y. et al. Association analysis between polymorphisms of the lymphotoxin-α gene and myocardial infarction in a Japanese population. Atherosclerosis172, 197–198 (2004). ArticleCASPubMed Google Scholar
Yamada, A. et al. Lack of association of polymorphisms of the lymphotoxin α gene with myocardial infarction in Japanese. J. Mol. Med.82, 477–483 (2004). CASPubMed Google Scholar
The PROCARDIS Consortium. A trio family study showing association of the lymphotoxin-α N26 (804A) allele with coronary artery disease. Eur. J. Hum. Genet.12, 770–774 (2004).
Knight, J. C., Keating, B. J., Rockett, K. A. & Kwiatkowski, D. P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nature Genet.33, 469–475 (2003). ArticleCASPubMed Google Scholar
Knight, J. C., Keating, B. J. & Kwiatkowski, D. P. Allele-specific repression of lymphotoxin-α by activated B cell factor-1. Nature Genet.36, 394–399 (2004). ArticleCASPubMed Google Scholar
Schreyer, S. A., Vick, C. M. & LeBoeuf, R. C. Loss of lymphotoxin-α but not tumor necrosis factor-α reduces atherosclerosis in mice. J. Biol. Chem.277, 12364–12368 (2002). ArticleCASPubMed Google Scholar
Ozaki, K. et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-α secretion in vitro. Nature429, 72–75 (2004). ArticleCASPubMed Google Scholar
Cullen, P. et al. Rupture of the atherosclerotic plaque: does a good animal model exist? Arterioscler. Thromb. Vasc. Biol.23, 535–542 (2003). ArticleCASPubMed Google Scholar
Wang, X. et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nature Genet.37, 365–372 (2005). ArticleCASPubMed Google Scholar
Austin, M. A., Hokanson, J. E. & Edwards, K. L. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol.81, 7B–12B (1998). ArticleCASPubMed Google Scholar
Rees, A., Shoulders, C. C., Stocks, J., Galton, D. J. & Baralle, F. E. DNA polymorphism adjacent to the human apolipoprotein A1 gene: relationship to hypertriglyceridemia. Lancet1, 444–446 (1983). ArticleCASPubMed Google Scholar
van Dijk, K. W., Rensen, P. C., Voshol, P. J. & Havekes, L. M. The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr. Opin. Lipidol.15, 239–246 (2004). ArticleCASPubMed Google Scholar
Pennacchio, L. A. et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science294, 169–173 (2001). An exemplary comparative genomics study that identified and characterized a novel apolipoprotein which was later implicated in human dyslipidaemia. ArticleCASPubMed Google Scholar
Shoulders, C. C., Jones, E. L. & Naoumova, R. P. Genetics of familial combined hyperlipidemia and risk of coronary heart disease. Hum. Mol. Genet.13, R149–R160 (2004). ArticleCASPubMed Google Scholar
Goldstein, J. L., Schrott, H. G., Hazzard, W. R., Bierman, E. L. & Motulsky, A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest.52, 1544–1568 (1973). ArticleCASPubMedPubMed Central Google Scholar
Austin, M. A. et al. Cardiovascular disease mortality in familial forms of hypertriglyceridemia: A 20-year prospective study. Circulation101, 2777–2782 (2000). ArticleCASPubMed Google Scholar
Wojciechowski, A. P. et al. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23–q24. Nature349, 161–164 (1991). ArticleCASPubMed Google Scholar
Castellani, L. W. et al. Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nature Genet.18, 374–377 (1998). ArticleCASPubMed Google Scholar
Bodnar, J. S. et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nature Genet.30, 110–116 (2002). ArticleCASPubMed Google Scholar
Pajukanta, P. et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nature Genet.36, 371–376 (2004). Following up on earlier linkage to chromosome 1q, gene-association studies excluded a candidate gene (TXNIP) that was implicated in mouse studies and instead identified a novel susceptibility gene that has a conserved intronic regulatory element. ArticleCASPubMed Google Scholar
Coon, H. et al. TXNIP gene not associated with familial combined hyperlipidemia in the NHLBI Family Heart Study. Atherosclerosis.174, 357–362 (2004). ArticleCASPubMed Google Scholar
Putt, W. et al. Variation in USF1 shows haplotype effects, gene:gene and gene:environment associations with glucose and lipid parameters in the European Atherosclerosis Research Study II. Hum. Mol. Genet.13, 1587–1597 (2004). ArticleCASPubMed Google Scholar
Naukkarinen, J. et al. USF1 and dyslipidemias: converging evidence for a functional intronic variant. Hum. Mol. Genet.14, 2595–2605 (2005). ArticleCASPubMed Google Scholar
Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet.13, R1–R7 (2004). ArticleCASPubMed Google Scholar
Swanberg, M. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nature Genet.37, 486–494 (2005). ArticleCASPubMed Google Scholar
Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nature Genet.36, 512–517 (2004). ArticleCASPubMed Google Scholar
Keavney, B. Commentary: Katan's remarkable foresight: genes and causality 18 years on. Int. J. Epidemiol.33, 11–14 (2004). ArticlePubMed Google Scholar
Benjamin, E. J. et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation109, 613–619 (2004). ArticlePubMed Google Scholar
Mitchell, G. F. et al. Heritability and a genome-wide linkage scan for arterial stiffness, wave reflection, and mean arterial pressure: the Framingham Heart Study. Circulation112, 194–199 (2005). ArticlePubMed Google Scholar
Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet.17, 388–391 (2001). ArticleCASPubMed Google Scholar
Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet.37, 710–717 (2005). ArticleCASPubMed Google Scholar
Jansen, R. C. & Nap, J. P. Regulating gene expression: surprises still in store. Trends Genet.20, 223–225 (2004). ArticleCASPubMed Google Scholar
Cervino, A.C. et al. Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics.86, 505–517 (2005). ArticleCASPubMed Google Scholar
Mehrabian, M. et al. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Genet.37, 1224–1233 (2005). ArticleCASPubMed Google Scholar
Helgadottir, A. et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nature Genet.38, 68–74 (2006). ArticleCASPubMed Google Scholar
Choudhury, R. P. Fuster, V. & Fayad, Z. A. Molecular, cellular and functional imaging of atherothrombosis. Nature Rev. Drug Discov.3, 913–925 (2004). ArticleCAS Google Scholar