Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature409, 928–933 (2001). CASPubMed Google Scholar
Gibbs, R. A. et al. The international HapMap project. Nature426, 789–796 (2003). A description of the HapMap project, which will empirically determine LD patterns across the human genome, allowing the efficient selection of SNPs for genome-wide association studies. CAS Google Scholar
Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet.26, 151–157 (2000). CASPubMed Google Scholar
Blangero, J. Localization and identification of human quantitative trait loci: king harvest has surely come. Curr. Opin. Genet. Dev.14, 233–240 (2004). CASPubMed Google Scholar
McKeigue, P. M. Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am. J. Hum. Genet.63, 241–251 (1998). CASPubMedPubMed Central Google Scholar
Patterson, N. et al. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet.74, 979–1000 (2004). CASPubMedPubMed Central Google Scholar
Hoggart, C. J., Shriver, M. D., Kittles, R. A., Clayton, D. G. & McKeigue, P. M. Design and analysis of admixture mapping studies. Am. J. Hum. Genet.74, 965–978 (2004). CASPubMedPubMed Central Google Scholar
Zhu, X., Cooper, R. S. & Elston, R. C. Linkage analysis of a complex disease through use of admixed populations. Am. J. Hum. Genet.74, 1136–1153 (2004). CASPubMedPubMed Central Google Scholar
Jimenez-Sanchez, G., Childs, B. & Valle, D. Human disease genes. Nature409, 853–855 (2001). CASPubMed Google Scholar
Pritchard, J. K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet.69, 124–137 (2001). CASPubMedPubMed Central Google Scholar
Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet.17, 502–510 (2001). CASPubMed Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). CASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). CASPubMed Google Scholar
Rioux, J. D. et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nature Genet.29, 223–228 (2001). CASPubMed Google Scholar
Stoll, M. et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet.36, 476–480 (2004). CASPubMed Google Scholar
Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet.71, 877–892 (2002). PubMedPubMed Central Google Scholar
Nistico, L. et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum. Mol. Genet.5, 1075–1080 (1996). CASPubMed Google Scholar
Altmuller, J., Palmer, L. J., Fischer, G., Scherb, H. & Wjst, M. Genomewide scans of complex human diseases: true linkage is hard to find. Am. J. Hum. Genet.69, 936–950 (2001). CASPubMedPubMed Central Google Scholar
Daly, M. J. & Rioux, J. D. New approaches to gene hunting in IBD. Inflamm. Bowel Dis.10, 312–317 (2004). PubMed Google Scholar
Evans, D. M. & Cardon, L. R. Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am. J. Hum. Genet.75, 687–692 (2004). CASPubMedPubMed Central Google Scholar
Enhancing linkage analysis of complex disorders: an evaluation of high-density genotyping. Hum. Mol. Genet.13, 1943–1949 (2004).
John, S. et al. Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites. Am. J. Hum. Genet.75, 54–64 (2004). CASPubMedPubMed Central Google Scholar
Middleton, F. A. et al. Genomewide linkage analysis of bipolar disorder by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am. J. Hum. Genet.74, 886–897 (2004). CASPubMedPubMed Central Google Scholar
Levy, D. et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension36, 477–483 (2000). CASPubMed Google Scholar
Cox, N. J. et al. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am. J. Hum. Genet.69, 820–830 (2001). CASPubMedPubMed Central Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). A discussion of the power of association studies versus linkage studies for common alleles of modest effect, also anticipating the requirement to take multiple-hypothesis testing into account in genome-wide association studies. CASPubMed Google Scholar
Risch, N. J. Searching for genetic determinants in the new millennium. Nature405, 847–856 (2000). CASPubMed Google Scholar
Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet.2, 91–99 (2001). CASPubMed Google Scholar
Tabor, H. K., Risch, N. J. & Myers, R. M. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Rev. Genet.3, 391–397 (2002). CASPubMed Google Scholar
Wang, W. Y. S., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet.6, 109–118 (2005). CASPubMed Google Scholar
Harris, H. The Principle of Human Biochemical Genetics 211–242 (American Elsevier Publishing Company, New York, 1970). Google Scholar
Chakravarti, A. Population genetics — making sense out of sequence. Nature Genet.21, 56–60 (1999). CASPubMed Google Scholar
Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet.22, 231–238 (1999). CASPubMed Google Scholar
Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet.22, 239–247 (1999). CASPubMed Google Scholar
Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of genetic association studies. Nature Genet.29, 306–309 (2001). CASPubMed Google Scholar
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet.33, 177–182 (2003). A meta-analysis of association studies between common variants and common diseases, which indicates that a fraction (but much fewer than half) of reported associations are correct. Modest effects are the rule, indicating the need for large sample sizes. CASPubMed Google Scholar
Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic α-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes52, 568–572 (2003). CASPubMed Google Scholar
Florez, J. C. et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes53, 1360–1368 (2004). CASPubMed Google Scholar
Altshuler, D. et al. The common PPARG Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genet.26, 76–80 (2000) This study uses large sample sizes to demonstrate a modest but consistent association between a missense polymorphism in a candidate gene and type 2 diabetes. CASPubMed Google Scholar
Stefansson, H. et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am. J. Hum. Genet.72, 83–87 (2003). CASPubMed Google Scholar
Yang, J. Z. et al. Association study of neuregulin 1 gene with schizophrenia. Mol. Psychiatry8, 706–709 (2003). CASPubMed Google Scholar
Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423, 506–511 (2003). By testing many variants in large samples, and using logistic regression, this study shows that a 3′ UTR variant is more strongly associated with autoimmune diseases than the previously studied missense variant in the same gene. CASPubMed Google Scholar
Negoro, K. et al. Analysis of the IBD5 locus and potential gene–gene interactions in Crohn's disease. Gut52, 541–546 (2003). CASPubMedPubMed Central Google Scholar
Giallourakis, C. et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am. J. Hum. Genet.73, 205–211 (2003). CASPubMedPubMed Central Google Scholar
Lindgren, C. & Hirschhorn, J. Genetics of type 2 diabetes. Endocrinologist11, 178–187 (2001). Google Scholar
Florez, J. C., Hirschhorn, J. & Altshuler, D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu. Rev. Genomics Hum. Genet.4, 257–291 (2003). CASPubMed Google Scholar
Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest.106, 253–262 (2000). CASPubMedPubMed Central Google Scholar
Hirschhorn, J. N. & Altshuler, D. Once and again — issues surrounding replication in genetic association studies. J. Clin. Endocrinol. Metab.87, 4438–4441 (2002). CASPubMed Google Scholar
Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science305, 869–872 (2004). CASPubMed Google Scholar
Carlson, C. S., Eberle, M. A., Kruglyak, L. & Nickerson, D. A. Mapping complex disease loci in whole-genome association studies. Nature429, 446–452 (2004). A useful and clear recent review of genome-wide association studies. CASPubMed Google Scholar
Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med.4, 45–61 (2002). CASPubMed Google Scholar
Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet.27, 234–236 (2001). CASPubMed Google Scholar
Syvanen, A. C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Rev. Genet.2, 930–942 (2001). CASPubMed Google Scholar
Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet.22, 139–144 (1999). CASPubMed Google Scholar
Jorde, L. B. Linkage disequilibrium and the search for complex disease genes. Genome Res.10, 1435–1444 (2000). CASPubMed Google Scholar
Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype structure in the human genome. Nature Genet.29, 229–232 (2001). The first description of long segments of strong LD with low haplotype diversity ('haplotype blocks'). CASPubMed Google Scholar
Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science294, 1719–1723 (2001). A survey of chromosome 21 that reveals long segments of LD with low haplotype diversity. CASPubMed Google Scholar
Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science296, 2225–2229 (2002). A survey of over 50 genomic regions that reveals long segments of LD with low haplotype diversity, including relatively large samples from multiple populations. CASPubMed Google Scholar
Johnson, G. C. et al. Haplotype tagging for the identification of common disease genes. Nature Genet.29, 233–237 (2001). CASPubMed Google Scholar
Dawson, E. et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature418, 544–548 (2002). CASPubMed Google Scholar
Crawford, D. C. et al. Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. Am. J. Hum. Genet.74, 610–622 (2004). CASPubMedPubMed Central Google Scholar
Goldstein, D. B., Ahmadi, K. R., Weale, M. E. & Wood, N. W. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet.19, 615–622 (2003). CASPubMed Google Scholar
Zhang, K., Deng, M., Chen, T., Waterman, M. S. & Sun, F. A dynamic programming algorithm for haplotype block partitioning. Proc. Natl Acad. Sci. USA99, 7335–7339 (2002). CASPubMedPubMed Central Google Scholar
Stram, D. O. et al. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum. Hered.55, 27–36 (2003). PubMed Google Scholar
Ke, X. & Cardon, L. R. Efficient selective screening of haplotype tag SNPs. Bioinformatics19, 287–288 (2003). CASPubMed Google Scholar
Weale, M. E. et al. Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A: implications for linkage-disequilibrium gene mapping. Am. J. Hum. Genet.73, 551–565 (2003). CASPubMedPubMed Central Google Scholar
Carlson, C. S. et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet.74, 106–120 (2004). CASPubMed Google Scholar
Halldorsson, B. V. et al. Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. Genome Res.14, 1633–1640 (2004). CASPubMedPubMed Central Google Scholar
Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet.33 Suppl. 228–237 (2003). A proposal to focus on missense SNPs in the search for the variants that underlie common disease. CASPubMed Google Scholar
Cambien, F. et al. Sequence diversity in 36 candidate genes for cardiovascular disorders. Am. J. Hum. Genet.65, 183–191 (1999). CASPubMedPubMed Central Google Scholar
Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet.5, 335–344 (2004). CASPubMed Google Scholar
Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562 (2002). CASPubMed Google Scholar
Loots, G. G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science288, 136–140 (2000). The identification of functional regulatory sequences using evolutionary conservation. CASPubMed Google Scholar
Pennacchio, L. A. & Rubin, E. M. Genomic strategies to identify mammalian regulatory sequences. Nature Rev. Genet.2, 100–109 (2001). CASPubMed Google Scholar
Thomas, J. W. et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature424, 788–793 (2003). CASPubMed Google Scholar
Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for long-range enhancers. Science302, 413 (2003). CASPubMed Google Scholar
Frazer, K. A. et al. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional. Genome Res.14, 367–372 (2004). CASPubMedPubMed Central Google Scholar
Boffelli, D., Nobrega, M. A. & Rubin, E. M. Comparative genomics at the vertebrate extremes. Nature Rev. Genet.5, 456–465 (2004). CASPubMed Google Scholar
Buetow, K. H. et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl Acad. Sci. USA98, 581–584 (2001). CASPubMedPubMed Central Google Scholar
De La Vega, F. M., et al. New generation pharmacogenomic tools: a SNP linkage disequilibrium map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies. Biotechniques (Suppl.), 48–50, 52, 54 (2002).
Matsuzaki, H. et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res.14, 414–425 (2004). CASPubMedPubMed Central Google Scholar
van den Oord, E. J. & Sullivan, P. F. False discoveries and models for gene discovery. Trends Genet.19, 537–542 (2003). CASPubMed Google Scholar
Lowe, C. E. et al. Cost-effective analysis of candidate genes using htSNPs: a staged approach. Genes Immun.5, 301–305 (2004). CASPubMed Google Scholar
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res.125, 279–284 (2001). CASPubMed Google Scholar
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA100, 9440–9445 (2003). CASPubMedPubMed Central Google Scholar
Dudbridge, F. & Koeleman, B. P. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies. Am. J. Hum. Genet.75, 424–435 (2004). CASPubMedPubMed Central Google Scholar
Nyholt, D. R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet.74, 765–769 (2004). CASPubMedPubMed Central Google Scholar
Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. & Rothman, N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl Cancer Inst.96, 434–442 (2004). A Bayesian perspective on the interpretation of association studies, which emphasizes the negative impact of low prior probabilities and inadequate power on the likelihood that an association is valid. PubMedPubMed Central Google Scholar
Barratt, B. J. et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes53, 1884–1889 (2004). CASPubMed Google Scholar
Sham, P., Bader, J. S., Craig, I., O'Donovan, M. & Owen, M. DNA Pooling: a tool for large-scale association studies. Nature Rev. Genet.3, 862–871 (2002). CASPubMed Google Scholar
Barratt, B. J. et al. Identification of the sources of error in allele frequency estimations from pooled DNA indicates an optimal experimental design. Ann. Hum. Genet.66, 393–405 (2002). CASPubMed Google Scholar
Rabinowitz, D. A transmission disequilibrium test for quantitative trait loci. Hum. Hered.47, 342–350 (1997). CASPubMed Google Scholar
Fulker, D. W., Cherny, S. S., Sham, P. C. & Hewitt, J. K. Combined linkage and association sib-pair analysis for quantitative traits. Am. J. Hum. Genet.64, 259–267 (1999). CASPubMedPubMed Central Google Scholar
Abecasis, G. R., Cookson, W. O. & Cardon, L. R. Pedigree tests of transmission disequilibrium. Eur. J. Hum. Genet.8, 545–551 (2000). CASPubMed Google Scholar
Abecasis, G. R., Cardon, L. R. & Cookson, W. O. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet.66, 279–292 (2000). CASPubMed Google Scholar
Zaykin, D. V. et al. Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum. Hered.53, 79–91 (2002). PubMed Google Scholar
Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M. & Poland, G. A. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet.70, 425–434 (2002). PubMed Google Scholar
Stram, D. O. et al. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum. Hered.55, 179–190 (2003). PubMed Google Scholar
Pritchard, J. K. & Rosenberg, N. A. Use of unlinked genetic markers to detect population stratification in association studies. 65, 220–228 (1999).
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics55, 997–1004 (1999). CASPubMed Google Scholar
Reich, D. E. & Goldstein, D. B. Detecting association in a case-control study while correcting for population stratification. Am. J. Hum. Genet.20, 4–16 (2001). CAS Google Scholar
Pritchard, J. K., Stephens, M., Rosenberg, N. A. & Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet.67, 170–181 (2000). Description of software for detecting and correcting for the presence of multiple population subgroups in an association study. CASPubMedPubMed Central Google Scholar
Freedman, M. L. et al. Assessing the impact of population stratification on genetic association studies. Nature Genet.36, 388–393 (2004). CASPubMed Google Scholar
Morton, N. E. & Collins, A. Tests and estimates of allelic association in complex inheritance. Proc. Natl Acad. Sci. USA95, 11389–11393 (1998). CASPubMedPubMed Central Google Scholar
Wacholder, S., Rothman, N. & Caporaso, N. Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol. Biomarkers Prev.11, 513–520 (2002). PubMed Google Scholar
Thomas, D. C. & Witte, J. S. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol. Biomarkers Prev.11, 505–512 (2002). PubMed Google Scholar
Cardon, L. R. & Palmer, L. J. Population stratification and spurious allelic association. Lancet361, 598–604 (2003). PubMed Google Scholar
Ardlie, K. G., Lunetta, K. L. & Seielstad, M. Testing for population subdivision and association in four case-control studies. Am. J. Hum. Genet.71, 304–311 (2002). CASPubMedPubMed Central Google Scholar
Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nature Genet.36, 512–517 (2004). CASPubMed Google Scholar
Rosenberg, N. A., Li, L. M., Ward, R. & Pritchard, J. K. Informativeness of genetic markers for inference of ancestry. Am. J. Hum. Genet.73, 1402–1422 (2003). CASPubMedPubMed Central Google Scholar
Spielman, R. S. & Ewens, W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet.59, 983–989 (1996). CASPubMedPubMed Central Google Scholar
Frayling, T. M. et al. Parent-offspring trios: a resource to facilitate the identification of type 2 diabetes genes. Diabetes48, 2475–2479 (1999). CASPubMed Google Scholar
Spielman, R. S. & Ewens, W. J. A sibship test for linkage in the presence of association: the sib transmission/ disequilibrium test. Am. J. Hum. Genet.62, 450–458 (1998). CASPubMedPubMed Central Google Scholar
Horvath, S. & Laird, N. M. A discordant-sibship test for disequilibrium and linkage: no need for parental data. Am. J. Hum. Genet.63, 1886–1897 (1998). CASPubMedPubMed Central Google Scholar
Boehnke, M. & Langefeld, C. D. Genetic association mapping based on discordant sib pairs: the discordant-alleles test. Am. J. Hum. Genet.62, 950–961 (1998). CASPubMedPubMed Central Google Scholar
Martin, E. R., Monks, S. A., Warren, L. L. & Kaplan, N. L. A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am. J. Hum. Genet.67, 146–154 (2000). CASPubMedPubMed Central Google Scholar
Lazzeroni, L. C. Allele sharing and allelic association I: sib pair tests with increased power. Genet. Epidemiol.22, 328–344 (2002). PubMed Google Scholar
Mitchell, A. A., Cutler, D. J. & Chakravarti, A. Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am. J. Hum. Genet.72, 598–610 (2003). CASPubMedPubMed Central Google Scholar
Gordon, D. et al. A transmission disequilibrium test for general pedigrees that is robust to the presence of random genotyping errors and any number of untyped parents. Eur. J. Hum. Genet.12, 752–761 (2004). CASPubMed Google Scholar
Cordell, H. J. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum. Mol. Genet.11, 2463–2468 (2002). A discussion of epistasis, including the usefulness of searching first for main effects. CASPubMed Google Scholar
Leal, S. M. & Ott, J. Effects of stratification in the analysis of affected-sib-pair data: benefits and costs. Am. J. Hum. Genet.66, 567–575 (2000). CASPubMedPubMed Central Google Scholar
Cordell, H. J., Wedig, G. C., Jacobs, K. B. & Elston, R. C. Multilocus linkage tests based on affected relative pairs. Am. J. Hum. Genet.66, 1273–1286 (2000). CASPubMedPubMed Central Google Scholar
Cordell, H. J. et al. Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. Genetics158, 357–367 (2001). CASPubMedPubMed Central Google Scholar
Ritchie, M. D. et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet.69, 138–147 (2001). CASPubMedPubMed Central Google Scholar
Hoh, J. & Ott, J. Mathematical multi-locus approaches to localizing complex human trait genes. Nature Rev. Genet.4, 701–709 (2003). CASPubMed Google Scholar
Singer, J. B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science304, 445–448 (2004). CASPubMed Google Scholar
Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nature Genet.32, 650–654 (2002). CASPubMed Google Scholar
Kamatani, N. et al. Large-scale single-nucleotide polymorphism (SNP) and haplotype analyses, using dense SNP Maps, of 199 drug-related genes in 752 subjects: the analysis of the association between uncommon SNPs within haplotype blocks and the haplotypes constructed with haplotype-tagging SNPs. Am. J. Hum. Genet.75, 190–203 (2004). CASPubMedPubMed Central Google Scholar
Lin, S., Chakravarti, A. & Cutler, D. J. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nature Genet.36, 1181–1188 (2004). CASPubMed Google Scholar
Vermeire, S. et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am. J. Hum. Genet.71, 74–83 (2002). CASPubMedPubMed Central Google Scholar
Shifman, S., Kuypers, J., Kokoris, M., Yakir, B. & Darvasi, A. Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet.12, 771–776 (2003). CASPubMed Google Scholar
Kaessmann, H. et al. Extensive linkage disequilibrium in small human populations in Eurasia. Am. J. Hum. Genet.70, 673–685 (2002). CASPubMedPubMed Central Google Scholar