Genetics of Parkinson disease: paradigm shifts and future prospects (original) (raw)
Tanner, C. M. Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies. Adv. Neurol.91, 133–142 (2003). PubMed Google Scholar
Wirdefeldt, K., Gatz, M., Schalling, M. & Pedersen, N. L. No evidence for heritability of Parkinson disease in Swedish twins. Neurology63, 305–311 (2004). ArticlePubMed Google Scholar
Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron44, 601–607 (2004). Describes the identification of the PARK8 gene,LRRK2, as a cause of late-onset Parkinson disease that might be associated with a pleomorphic pathology. ArticleCASPubMed Google Scholar
Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science304, 1158–1160 (2004). ArticleCASPubMed Google Scholar
Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science302, 841 (2003). Describes the discovery of α-synuclein multiplication mutations, which showed that simple overexpression of the wild-type protein is sufficient to cause disease. This work also suggests that Parkinson disease and dementia with Lewy bodies share the same aetiology. ArticleCASPubMed Google Scholar
Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science276, 2045–2047 (1997). ArticleCASPubMed Google Scholar
Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron44, 595–600 (2004). ArticleCASPubMed Google Scholar
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392, 605–608 (1998). ArticleCASPubMed Google Scholar
Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299, 256–259 (2003). ArticleCASPubMed Google Scholar
Fahn, S. Description of Parkinson's disease as a clinical syndrome. Ann. NY Acad. Sci.991, 1–14 (2003). An excellent review of the clinical symptomatology of Parkinson disease. ArticleCASPubMed Google Scholar
Van Den Eeden, S. K. et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol.157, 1015–1022 (2003). ArticlePubMed Google Scholar
Hughes, A. J., Daniel, S. E., Ben-Shlomo, Y. & Lees, A. J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain125, 861–870 (2002). ArticlePubMed Google Scholar
Chen, L. & Feany, M. B. α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neurosci.8, 657–663 (2005). Provides functional insights to suggest that α-synuclein inclusions and Lewy bodies might be protective rather than pathogenic. ArticleCASPubMed Google Scholar
Firestone, J. A. et al. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch. Neurol.62, 91–95 (2005). ArticlePubMed Google Scholar
Jankovic, J. Searching for a relationship between manganese and welding and Parkinson's disease. Neurology64, 2021–2028 (2005). ArticleCASPubMed Google Scholar
Priyadarshi, A., Khuder, S. A., Schaub, E. A. & Priyadarshi, S. S. Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res.86, 122–127 (2001). ArticleCASPubMed Google Scholar
Allam, M. F., Campbell, M. J., Hofman, A., Del Castillo, A. S. & Fernandez-Crehuet Navajas, R. Smoking and Parkinson's disease: systematic review of prospective studies. Mov. Disord.19, 614–621 (2004). ArticlePubMed Google Scholar
Leroux, P.-D. Contribution à l'Étude des Causes de la Paralysie Agitante. Thèse de Paris, Imprimeur de la Faculté de Médecine (1880) (in French). Google Scholar
Allen, W. Inheritance of the shaking palsy. Arch. Int. Med.60, 424–436 (1937). Article Google Scholar
Mjones, H. Paralysis Agitans. A clinical and genetic study. Acta Psychiatr. Neurol. Scand. Supplement 54, 1–195 (Ejnar Munksgaard, Copenhagen, 1949).
Piccini, P., Burn, D. J., Ceravolo, R., Maraganore, D. & Brooks, D. J. The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins. Ann. Neurol.45, 577–582 (1999). ArticleCASPubMed Google Scholar
Tanner, C. M. et al. Parkinson disease in twins: an etiologic study. JAMA281, 341–346 (1999). ArticleCASPubMed Google Scholar
Sveinbjornsdottir, S. et al. Familial aggregation of Parkinson's disease in Iceland. N. Engl. J. Med.343, 1765–1770 (2000). ArticleCASPubMed Google Scholar
Rocca, W. A. et al. Familial aggregation of Parkinson's disease: The Mayo Clinic family study. Ann. Neurol.56, 495–502 (2004). ArticlePubMed Google Scholar
Simon, D. K., Lin, M. T. & Pascual-Leone, A. 'Nature versus nurture' and incompletely penetrant mutations. J. Neurol. Neurosurg. Psychiatry72, 686–689 (2002). ArticleCASPubMedPubMed Central Google Scholar
Valente, E. M. et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol.56, 336–341 (2004). ArticleCASPubMed Google Scholar
Maraganore, D. M. et al. UCHL1 is a Parkinson's disease susceptibility gene. Ann. Neurol.55, 512–521 (2004). ArticleCASPubMed Google Scholar
Lotharius, J. & Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and α-synuclein. Nature Rev. Neurosci.3, 932–942 (2002). ArticleCAS Google Scholar
Sidhu, A., Wersinger, C., Moussa, C. E. & Vernier, P. The role of α-synuclein in both neuroprotection and neurodegeneration. Ann. NY Acad. Sci.1035, 250–270 (2004). ArticleCASPubMed Google Scholar
Bostantjopoulou, S. et al. Clinical features of parkinsonian patients with the α-synuclein (G209A) mutation. Mov. Disord.16, 1007–1013 (2001). ArticleCASPubMed Google Scholar
Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet.18, 106–108 (1998). ArticleCASPubMed Google Scholar
Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol.55, 164–173 (2004). ArticleCASPubMed Google Scholar
Hope, A. & Farrer, M. in Molecular Mechanisms in Parkinson's Disease (eds Philipp, K. & Haass, C.) (Landes Bioscience, Georgetown, Texas, 2004). Google Scholar
Lashuel, H. A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol.322, 1089–1102 (2002). ArticleCASPubMed Google Scholar
Farrer, M. et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol.55, 174–179 (2004). ArticleCASPubMed Google Scholar
Chartier-Harlin, M. C. et al. α-Synuclein locus duplication as a cause of familial Parkinson's disease. Lancet364, 1167–1169 (2004). ArticleCASPubMed Google Scholar
Ibanez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson's disease. Lancet364, 1169–1171 (2004). ArticleCASPubMed Google Scholar
Nishioka, K. et al. Clinical heterogeneity of α-synuclein gene duplication in autosomal dominant familial Parkinson's disease. Ann. Neurol.59, 298–309 (2006). ArticleCASPubMed Google Scholar
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA95, 6469–6473 (1998). ArticleCASPubMed Google Scholar
McKeith, I. G. et al. Dementia with Lewy bodies. Semin. Clin. Neuropsychiatry8, 46–57 (2003). ArticlePubMed Google Scholar
Poewe, W. Treatment of dementia with Lewy bodies and Parkinson's disease dementia. Mov. Disord.20, S77–S82 (2005). ArticlePubMed Google Scholar
Pals, P. et al. α-Synuclein promoter confers susceptibility to Parkinson's disease. Ann. Neurol.56, 591–595 (2004). ArticleCASPubMed Google Scholar
Mueller, J. C. et al. Multiple regions of α-synuclein are associated with Parkinson's disease. Ann. Neurol.57, 535–541 (2005). ArticleCASPubMed Google Scholar
Chiba-Falek, O., Kowalak, J. A., Smulson, M. E. & Nussbaum, R. L. Regulation of α-synuclein expression by poly (ADP ribose) polymerase-1 (PARP-1) binding to the NACP-Rep1 polymorphic site upstream of the SNCA gene. Am. J. Hum. Genet.76, 478–492 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mellick, G. D., Maraganore, D. M. & Silburn, P. A. Australian data and meta-analysis lend support for α-synuclein (NACP-Rep1) as a risk factor for Parkinson's disease. Neurosci. Lett.375, 112–116 (2005). ArticleCASPubMed Google Scholar
Lakso, M. et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem.86, 165–172 (2003). ArticleCASPubMed Google Scholar
Fernagut, P. O. & Chesselet, M. F. α-Synuclein and transgenic mouse models. Neurobiol. Dis.17, 123–130 (2004). ArticleCASPubMed Google Scholar
Yamada, M., Iwatsubo, T., Mizuno, Y. & Mochizuki, H. Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of α-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. J. Neurochem.91, 451–461 (2004). ArticleCASPubMed Google Scholar
Perez, R. G. & Hastings, T. G. Could a loss of α-synuclein function put dopaminergic neurons at risk? J. Neurochem.89, 1318–1324 (2004). ArticleCASPubMed Google Scholar
Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature404, 394–398 (2000). ArticleCASPubMed Google Scholar
Takahashi, M. et al. Phosphorylation of α-synuclein characteristic of synucleinopathy lesions is recapitulated in αsynuclein transgenic Drosophila. Neurosci. Lett.336, 155–158 (2003). ArticleCASPubMed Google Scholar
Auluck, P. K., Meulener, M. C. & Bonini, N. M. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem.280, 2873–2878 (2005). ArticleCASPubMed Google Scholar
Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biol.4, 160–164 (2002). ArticleCASPubMed Google Scholar
Nonaka, T., Iwatsubo, T. & Hasegawa, M. Ubiquitination of α-synuclein. Biochemistry44, 361–368 (2005). ArticleCASPubMed Google Scholar
Funayama, M. et al. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2–q13.1. Ann. Neurol.51, 296–301 (2002). ArticleCASPubMed Google Scholar
Kachergus, J. et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet.76, 672–680 (2005). This work shows that a common founder was responsible for the most frequent mutation to cause Parkinson disease that has been identified so far:LRRK2Gly2019Ser. It also provides an age-associated penetrance estimate. ArticleCASPubMedPubMed Central Google Scholar
Paisan-Ruiz, C. et al. Familial Parkinson's disease: clinical and genetic analysis of four Basque families. Ann. Neurol.57, 365–372 (2005). ArticlePubMed Google Scholar
Funayama, M. et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol.57, 918–921 (2005). ArticleCASPubMed Google Scholar
Mata, I. F. et al. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics6, 171–177 (2005). ArticleCASPubMed Google Scholar
Gilks, W. P. et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet365, 415–416 (2005). CASPubMed Google Scholar
Di Fonzo, A. et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet365, 412–415 (2005). ArticleCASPubMed Google Scholar
Nichols, W. C. et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet365, 410–412 (2005). CASPubMed Google Scholar
Tomiyama, H. et al. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 different countries. Mov. Disord. 2006 (doi: 10.1002/mds.20886).
Ozelius, L. J. et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med.354, 424–425 (2006). ArticleCASPubMed Google Scholar
Lesage, S. et al. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med.354, 422–423 (2006). ArticleCASPubMed Google Scholar
Lesage, S. et al. G2019S LRRK2 mutation in French and North African families with Parkinson's disease. Ann. Neurol.58, 784–787 (2005). ArticleCASPubMed Google Scholar
Aasly, J. O. et al. Clinical features of _LRRK2_-associated Parkinson's disease in central Norway. Ann. Neurol.57, 762–765 (2005). ArticleCASPubMed Google Scholar
West, A. B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA102, 16842–16847 (2005). ArticleCASPubMed Google Scholar
Gloeckner, C. J. et al. The Parkinson disease causing LRRK2 mutation I20202T is associated with increased kinase activity. Hum. Mol. Genet.15, 223–232 (2006). References 72 and 73 show thatLRRK2substitutions might enhance kinase activity, which indicates the therapeutic possibility of kinase inhibition as a neuroprotective therapy in Parkinson disease. ArticleCASPubMed Google Scholar
Wszolek, Z. K. et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology62, 1619–1622 (2004). ArticleCASPubMed Google Scholar
Hasegawa, K. & Kowa, H. Autosomal dominant familial Parkinson disease: older onset of age, and good response to levodopa therapy. Eur. Neurol.38, 39–43 (1997). ArticleCASPubMed Google Scholar
Giasson, B. I. et al. Biochemical and pathological characterization of Lrrk2. Ann. Neurol.59, 315–322 (2005). ArticleCAS Google Scholar
Bosgraaf, L. et al. A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. EMBO J.21, 4560–4570 (2002). ArticleCASPubMedPubMed Central Google Scholar
Katzenschlager, R. & Lees, A. J. Olfaction and Parkinson's syndromes: its role in differential diagnosis. Curr. Opin. Neurol.17, 417–423 (2004). ArticlePubMed Google Scholar
Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci.30, 151–159 (2005). ArticleCASPubMed Google Scholar
Mata, I. F., Lockhart, P. J. & Farrer, M. J. Parkin genetics: one model for Parkinson's disease. Hum. Mol. Genet.13, R127–R133 (2004). ArticleCASPubMed Google Scholar
Abou-Sleiman, P. M., Healy, D. G. & Wood, N. W. Causes of Parkinson's disease: genetics of DJ-1. Cell Tissue Res318, 185–188 (2004). ArticleCASPubMed Google Scholar
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin–protein ligase. Nature Genet.25, 302–305 (2000). Functional insights from the first gene to be implicated in early-onset parkinsonism, Parkin, highlighted the role of the ubiquitin–proteasome pathway in pure nigral neuronal degeneration. ArticleCASPubMed Google Scholar
Pramstaller, P. P. et al. Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann. Neurol.58, 411–422 (2005). ArticleCASPubMed Google Scholar
Sriram, S. R. et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum. Mol. Genet.14, 2571–2586 (2005). ArticleCASPubMed Google Scholar
Betarbet, R., Sherer, T. B. & Greenamyre, J. T. Ubiquitin–proteasome system and Parkinson's diseases. Exp. Neurol.191, S17–S27 (2005). ArticleCASPubMed Google Scholar
Ko, H. S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci.25, 7968–7978 (2005). ArticleCASPubMed Google Scholar
Lo Bianco, C. et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease. Proc. Natl Acad. Sci. USA101, 17510–17515 (2004). ArticleCASPubMed Google Scholar
Greene, J. C., Whitworth, A. J., Andrews, L. A., Parker, T. J. & Pallanck, L. J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet.14, 799–811 (2005). ArticleCASPubMed Google Scholar
Valente, E. M. et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35–p36. Am. J. Hum. Genet.68, 895–900 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hatano, Y. et al. Novel PINK1 mutations in early-onset parkinsonism. Ann. Neurol.56, 424–427 (2004). ArticleCASPubMed Google Scholar
Petit, A. et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson's disease-related mutations. J. Biol. Chem.280, 34025–34032 (2005). ArticleCASPubMed Google Scholar
Beilina, A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc. Natl Acad. Sci. USA102, 5703–5708 (2005). ArticleCASPubMed Google Scholar
Deng, H., Jankovic, J., Guo, Y., Xie, W. & Le, W. Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun.337, 1133–1138 (2005). ArticleCASPubMed Google Scholar
Kessler, K. R. et al. Dopaminergic function in a family with the PARK6 form of autosomal recessive Parkinson's syndrome. J. Neural Transm.112, 1345–1353 (2005). ArticleCASPubMed Google Scholar
Khan, N. L. et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann. Neurol.52, 849–853 (2002). ArticlePubMed Google Scholar
Lockhart, P. J. et al. DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J. Med. Genet.41, e22 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tao, X. & Tong, L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease. J. Biol. Chem.278, 31372–31379 (2003). ArticleCASPubMed Google Scholar
Zhang, L. et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum. Mol. Genet.14, 2063–2073 (2005). ArticleCASPubMed Google Scholar
Goldberg, M. S. et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron45, 489–496 (2005). ArticleCASPubMed Google Scholar
Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA102, 5215–5220 (2005). ArticleCASPubMed Google Scholar
Yang, Y. et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA102, 13670–13675 (2005). ArticleCASPubMed Google Scholar
Meulener, M. et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr. Biol.15, 1572–1577 (2005). ArticleCASPubMed Google Scholar
Dekker, M. C. et al. PET neuroimaging and mutations in the DJ-1 gene. J. Neural Transm.111, 1575–1581 (2004). ArticleCASPubMed Google Scholar
Rizzu, P. et al. DJ-1 colocalizes with tau inclusions:a link between parkinsonism and dementia. Ann. Neurol.55, 113–118 (2004). ArticleCASPubMed Google Scholar
Scott, W. K. et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA286, 2239–2244 (2001). ArticleCASPubMed Google Scholar
Hicks, A. A. et al. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann. Neurol.52, 549–555 (2002). ArticleCASPubMed Google Scholar
DeStefano, A. L. et al. PARK3 influences age at onset in Parkinson disease: a genome scan in the GenePD study. Am. J. Hum. Genet.70, 1089–1095 (2002). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. J. et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet.70, 985–993 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pankratz, N. et al. Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum. Mol. Genet.12, 2599–2608 (2003). ArticleCASPubMed Google Scholar
Martinez, M. et al. Genome-wide scan linkage analysis for Parkinson's disease: the European genetic study of Parkinson's disease. J. Med. Genet.41, 900–907 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hutton, M. Molecular genetics of chromosome 17 tauopathies. Ann. NY Acad. Sci.920, 63–73 (2000). ArticleCASPubMed Google Scholar
Rademakers, R. et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum. Mol. Genet.14, 3281–3292 (2005). ArticleCASPubMed Google Scholar
Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. & Lansbury, P. T. Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell111, 209–218 (2002). ArticleCASPubMed Google Scholar
Shen, J. & Cookson, M. R. Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron43, 301–304 (2004). ArticleCASPubMed Google Scholar
Uitti, R. J., Calne, D. B., Dickson, D. W. & Wszolek, Z. K. Is the neuropathological 'gold standard' diagnosis dead? Implications of clinicopathological findings in an autosomal dominant neurodegenerative disorder. Parkinsonism Relat. Disord.10, 461–463 (2004). ArticlePubMed Google Scholar
Forman, M. S., Lee, V. M. & Trojanowski, J. Q. Nosology of Parkinson's disease: looking for the way out of a quackmire. Neuron47, 479–482 (2005). ArticleCASPubMed Google Scholar
Trojanowski, J. Q. & Lee, V. M. Transgenic models of tauopathies and synucleinopathies. Brain Pathol.9, 733–739 (1999). ArticleCASPubMed Google Scholar
Parkkinen, L., Kauppinen, T., Pirttila, T., Autere, J. M. & Alafuzoff, I. α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol.57, 82–91 (2005). ArticleCASPubMed Google Scholar
Wittmann, C. W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science293, 711–714 (2001). ArticleCASPubMed Google Scholar
Olanow, C. W. et al. Levodopa in the treatment of Parkinson's disease: current controversies. Mov. Disord.19, 997–1005 (2004). ArticlePubMed Google Scholar
Fahn, S. The spectrum of levodopa-induced dyskinesias. Ann. Neurol.47, S2–S9; discussion S9–S11 (2000). ArticleCASPubMed Google Scholar
Walter, B. L. & Vitek, J. L. Surgical treatment for Parkinson's disease. Lancet Neurol.3, 719–728 (2004). ArticlePubMed Google Scholar
Masliah, E. et al. Effects of α-synuclein immunization in a mouse model of Parkinson's disease. Neuron46, 857–868 (2005). A demonstration of the power of genetic insights in nominating targets for translational advances and creating the models in which to test them. ArticleCASPubMed Google Scholar
Ross, O. A. & Farrer, M. J. Pathophysiology, pleiotrophy and paradigm shifts: genetic lessons from Parkinson's disease. Biochem. Soc. Trans.33, 586–590 (2005). ArticleCASPubMed Google Scholar
Silva, R. M., Kuan, C. Y., Rakic, P. & Burke, R. E. Mixed lineage kinase-c-jun N-terminal kinase signaling pathway: a new therapeutic target in Parkinson's disease. Mov. Disord.20, 653–664 (2005). ArticlePubMed Google Scholar
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science219, 979–980 (1983). ArticleCASPubMed Google Scholar
Hirsch, E. C. et al. Animal models of Parkinson's disease in rodents induced by toxins: an update. J. Neural Transm. Suppl.65, 89–100 (2003). Article Google Scholar
Hirano, A., Kurland, L. T., Krooth, R. S. & Lessell, S. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain84, 642–661 (1961). ArticleCASPubMed Google Scholar
Ince, P. G. & Codd, G. A. Return of the cycad hypothesis — does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol. Appl. Neurobiol.31, 345–353 (2005). ArticleCASPubMed Google Scholar
Hof, P. R. et al. Amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders. Acta Neuropathol. (Berl.)88, 397–404 (1994). ArticleCAS Google Scholar
Sebeo, J., Hof, P. R. & Perl, D. P. Occurrence of α-synuclein pathology in the cerebellum of Guamanian patients with parkinsonism-dementia complex. Acta Neuropathol. (Berl.)107, 497–503 (2004). ArticleCAS Google Scholar
Caparros-Lefebvre, D. et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain125, 801–811 (2002). ArticlePubMed Google Scholar
Economo Von, C. Encephalytis Lethargica: its Sequelae and Treatment (Oxford University Press, London, 1931). Google Scholar
Dale, R. C. et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain127, 21–33 (2004). ArticlePubMed Google Scholar
Josephs, K. A., Parisi, J. E. & Dickson, D. W. α-Synuclein studies are negative in postencephalic parkinsonism of von Economo. Neurology59, 645–646 (2002). ArticlePubMed Google Scholar
Henry, J. M. & Jellinger, K. in Neurodegeneration: The molecular pathology of dementia and movement disorders (ed. Dickson, D.) (ISN Neuropath Press, Basel, 2003). Google Scholar