Polycomb silencing mechanisms and the management of genomic programmes (original) (raw)
Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature276, 565–570 (1978). ArticleCASPubMed Google Scholar
Jurgens, G. A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature316, 153–155 (1985). Article Google Scholar
Poux, S., Horard, B., Sigrist, C. J. & Pirrotta, V. The Drosophila Trithorax protein is a coactivator required to prevent re-establishment of Polycomb silencing. Development129, 2483–2493 (2002). CASPubMed Google Scholar
Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep.5, 373–377 (2004). References 3 and 4 provide evidence that the main role of TRX in the regulation of Hox genes is to prevent PcG silencing, rather than simply to activate their transcription. ArticleCASPubMedPubMed Central Google Scholar
Buchenau, P., Hodgson, J., Strutt, H. & Arndt-Jovin, D. J. The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J. Cell Biol.141, 469–481 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gemkow, M. J., Verveer, P. J., Arndt-Jovin, D. J. Homologous association of the Bithorax-complex during embryogenesis: consequences for transvection in Drosophila melanogaster. Development125, 4541–4552 (1998). CASPubMed Google Scholar
Sigrist, C. J. & Pirrotta, V. Chromatin insulator elements block the silencing of a target gene by the Drosophila Polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics147, 209–221 (1997). CASPubMedPubMed Central Google Scholar
Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M. & Cavalli, G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev.17, 2406–2420 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vazquez, J., Müller, M., Pirrotta, V. & Sedat, J. W. The Mcp element mediates stable long-range chromosome–chromosome interactions in Drosophila. Mol. Biol. Cell17, 2158–2165 (2006). ArticleCASPubMedPubMed Central Google Scholar
Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev.20, 1848–1867 (2006). ArticleCASPubMed Google Scholar
Delaval, K. & Feil, R. Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev.14, 188–195 (2004). ArticleCASPubMed Google Scholar
Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb Group Response Elements. Cell124, 957–971 (2006). ArticleCASPubMed Google Scholar
Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell98, 37–46 (1999). ArticleCASPubMed Google Scholar
Saurin, A. J., Shao, Z., Erdjument-Bromage, H., Tempst, P. & Kingston, R. E. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature412, 655–660 (2001). These authors characterized theD. melanogasterPRC1 complex, indicating that TAFs might be components. ArticleCASPubMed Google Scholar
Dura, J. et al. A complex genetic locus, polyhomoeotic, is required for segmental specification and epidermal development in D. melanogaster. Cell51, 829–839 (1987). ArticleCASPubMed Google Scholar
Wu, C.-T. & Howe, M. A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster. Genetics140, 139–181 (1995). CASPubMedPubMed Central Google Scholar
Beuchle, D., Struhl, G. & Müller, J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development128, 993–1004 (2001). CASPubMed Google Scholar
Brown, J. L., Fritsch, C., Mueller, J. & Kassis, J. A. The _Drosophila pho_-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development130, 285–294 (2003). ArticleCASPubMed Google Scholar
Wang, L. et al. Alternative ESC and ESC-like subunits of a Polycomb group histone methyltransferase complex are differentially deployed during Drosophila development. Mol. Cell. Biol.26, 2637–2647 (2006). ArticleCASPubMedPubMed Central Google Scholar
Levine, S. S. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol.22, 6070–6078 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev.17, 1870–1881 (2003). This study provides a direct measurement of the affinity of the PC chromodomain to the amino terminus of histone H3 trimethylated at K27 and shows the crystal structure of the complex between the two, which explains the specificity of the interaction. ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature431, 873–878 (2004). ArticleCASPubMed Google Scholar
de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell7, 663–676 (2004). ArticleCASPubMed Google Scholar
Cao, R., Tsukada, Y. & Zhang, Y. Role of BMi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell20, 845–854 (2005). ArticleCASPubMed Google Scholar
Buchwald, G. et al. Structure and E3-ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J.25, 2465–2474 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, Z., Cao, R., Myers, M. P., Zhang, Y. & Xu, R.-M. structure of a Bmi-1-Ring1B Polycomb group ubiquitin ligase complex. J. Biol. Chem.281, 20643–20649 (2006). ArticleCASPubMed Google Scholar
Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111, 185–196 (2002). ArticleCASPubMed Google Scholar
Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell111, 197–208 (2002). ArticleCASPubMed Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-Group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16, 2893–2905 (2002). References 27–30 provide the first experimental proof of the histone methyltransferase activity of the PRC2 complex. ArticleCASPubMedPubMed Central Google Scholar
Polo, S. E. & Almouzni, G. Chromatin assembly: a basic recipe with various flavours. Curr. Opin. Genet. Dev.16, 104–111 (2006). ArticleCASPubMed Google Scholar
Taylor-Harding, B., Binne, U. K., Korenjak, M., Brehm, A. & Dyson, N. J. p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol. Cell. Biol.24, 9124–9136 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ketel, C. S. et al. Subunit contributions to histone methyltransferase activities of fly and worm Polycomb group complexes. Mol. Cell. Biol.25, 6857–6868 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet.38, 700–705 (2006). High-resolution genome-wide mapping of PcG proteins and the trimethylated H3K27chromatin mark indicates that all of the main morphogenetic pathways inD. melanogasterare controlled by the PcG system. It also shows that PcG silencing is characterized by formation of broad trimethylated K27 domains and localized binding of PcG to PREs. ArticleCASPubMed Google Scholar
Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev.18, 2973–2983 (2004). This article shows that, inD. melanogaster, all H3K27 methylation is E(Z) dependent and points out that half ofD. melanogasterhistone H3 is dimethylated at K27. ArticleCASPubMedPubMed Central Google Scholar
Ringrose, L., Ehret, H. & Paro, R. Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes. Mol. Cell16, 641–653 (2004). ArticleCASPubMed Google Scholar
Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by TrxG and PcG proteins. Genes Dev.20, 2041–2054 (2006). Together with reference 67, this paper shows that trimethylated H3K27 marks the chromatin of the entire silencedUbxgene, and the histone-poor PREs represent the principal binding sites for PcG proteins. These results argue against a role of methylation in the recruitment of PcG complexes to PREs. ArticleCASPubMedPubMed Central Google Scholar
Ng, J., Hart, C. M., Morgan, K. & Simon, J. A. A Drosophila ESC–E(Z) protein complex is distinct from other Polycomb group complexes and contains covalently modified ESC. Mol. Cell. Biol.20, 3069–3078 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tie, F., Prasad-Sinha, J., Birve, A., Rasmuson-Lestander, A. & Harte, P. J. A 1-megadalton ESC/E(Z) complex from Drosophila that contains Polycomblike and RPD3. Mol. Cell. Biol.23, 3352–3362 (2003). This article indicates the existence of a larger species of the PRC2 complex, which contains PCL protein. It is possible that this PRC2 variant is responsible for K27 trimethylation at PcG target sites. ArticleCASPubMedPubMed Central Google Scholar
Furuyama, T., Banerjee, R., Breen, T. R. & Harte, P. J. SIR2 is required for Polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr. Biol.14, 1812–1821 (2004). ArticleCASPubMed Google Scholar
Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell14, 183–193 (2004). ArticleCASPubMed Google Scholar
Kuzmichev, A. et al. Composition and histone substrates of Polycomb repressive group complexes change during cellular differentiation. Proc. Natl Acad. Sci. USA102, 1859–1864 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pasini, D., Bracken, A. P., Jensen, M. R., Denchi, E. L. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J.23, 4061–4071 (2004). ArticleCASPubMedPubMed Central Google Scholar
Montgomery, N. D. et al. The murine Polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol.15, 942–947 (2005). ArticleCASPubMed Google Scholar
Brown, J. L., Mucci, D., Whiteley, M., Dirksen, M. L. & Kassis, J. A. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol. Cell1, 1057–1064 (1998). ArticleCASPubMed Google Scholar
Fritsch, C., Brown, J. L., Kassis, J. A. & Muller, J. The DNA-binding Polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development126, 3905–3913 (1999). CASPubMed Google Scholar
Brown, J. L., Fritsch, C., Mueller, J. & Kassis, J. A. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development130, 285–294 (2003). ArticleCASPubMed Google Scholar
Satijn, D. P., Hamer, K. M., den Blaauwen, J. & Otte, A. P. The Polycomb group protein EED interacts with YY1, and both proteins induce neural tissue in Xenopus embryos. Mol. Cell. Biol.21, 1360–1369 (2001). ArticleCASPubMedPubMed Central Google Scholar
Poux, S., Melfi, R. & Pirrotta, V. Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev.15, 2509–2514 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell14, 637–646 (2004). ArticleCASPubMed Google Scholar
Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev.20, 1110–1122 (2006). This paper describes the PhoRC complex, which contains the specific DNA-binding PHO protein. ArticleCASPubMedPubMed Central Google Scholar
Horard, B., Tatout, C., Poux, S. & Pirrotta, V. Structure of a Polycomb response element and in vitro binding of Polycomb group complexes containing GAGA factor. Mol. Cell. Biol.20, 3187–3197 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hodgson, J. W., Argiropoulos, B. & Brock, H. W. Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid Polycomb group response element-dependent silencing. Mol. Cell. Biol.21, 4528–4543 (2001). ArticleCASPubMedPubMed Central Google Scholar
Brown, J. L., Grau, D. J., DeVido, S. K. & Kassis, J. A. An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res.33, 5181–5189 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dejardin, J. et al. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature434, 533–538 (2005). ArticleCASPubMed Google Scholar
Müller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev.16, 476–484 (2006). ArticlePubMedCAS Google Scholar
Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature367, 525–532 (1994). ArticleCASPubMed Google Scholar
Shopland, L. S., Hirayoshi, K., Fernandes, M. & Lis, J. T. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev.9, 2756–2769 (1995). ArticleCASPubMed Google Scholar
Mohd-Sarip, A., Cleard, F., Mishra, R. K., Karch, F. & Verrijzer, C. P. Synergistic recognition of an epigenetic DNA element by pleiohomeotic and a Polycomb core complex. Genes Dev.19, 1755–1760 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ringrose, L., Rehmsmeier, M., Dura, J. M. & Paro, R. Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev. Cell5, 759–771 (2003). ArticleCASPubMed Google Scholar
Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nature Genet.38, 694–699 (2006). ArticleCASPubMed Google Scholar
Struhl, G. & Brower, D. Early role of the esc+ gene product in the determination of segments in Drosophila. Cell31, 285–292 (1982). ArticleCASPubMed Google Scholar
Rastelli, L., Chan, C. S. & Pirrotta, V. Related chromosome binding sites for zeste, Suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J.12, 1513–1522 (1993). ArticleCASPubMedPubMed Central Google Scholar
Edmunds, J. W. & Mahadevan, L. C. Protein kinases seek close encounters with active genes. Science313, 449–451 (2006). ArticleCASPubMed Google Scholar
Schwartz, Y. B., Kahn, T. G. & Pirrotta, V. Characteristic low density and shear sensitivity of cross-linked chromatin containing polycomb complexes. Mol. Cell. Biol.25, 432–439 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kahn, T. G., Schwartz, Y. B., Dellino, G. I. & Pirrotta, V. Polycomb complexes and the propagation of the methylation mark at the Drosophila Ubx gene. J. Biol. Chem.281, 29064–29075 (2006). Together with reference 37, this article demonstrates that the chromatin of the silentUbxgene is characterized by a broad trimethylated H3K27 domain and narrow peaks of PcG protein binding localized to histone-poor PREs. Furthermore, this study provides evidence that trimethylation of H3K27 spreads from the PRE, and that this spreading can be blocked by a chromatin insulator. ArticleCASPubMed Google Scholar
Mohd-Sarip, A. et al. Architecture of a Polycomb nucleoprotein complex. Mol. Cell24, 91–100 (2006). ArticleCASPubMed Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). ArticleCASPubMed Google Scholar
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Paro, R. & Hogness, D. S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl Acad. Sci. USA88, 263–267 (1991). ArticleCASPubMedPubMed Central Google Scholar
Paro, R. Imprinting a determined state into the chromatin of Drosophila. Trends Genet.6, 416–421 (1990). ArticleCASPubMed Google Scholar
Locke, J., Kotarski, M. A. & Tartof, K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics120, 181–198 (1988). CASPubMedPubMed Central Google Scholar
Hecht, A., Strahl-Bolsinger, S. & Grunstein, M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature383, 92–96 (1996). ArticleCASPubMed Google Scholar
Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature442, 86–90 (2006). ArticleCASPubMed Google Scholar
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432, 406–411 (2004). ArticleCASPubMed Google Scholar
Francis, N. J., Saurin, A. J., Shao, Z. & Kingston, R. E. Reconstitution of a functional core Polycomb repressive complex. Mol. Cell8, 545–556 (2001). ArticleCASPubMed Google Scholar
King, I. F., Francis, N. J. & Kingston, R. E. Native and recombinant Polycomb group complexes establish a selective block to template accessibility to repress transcription in vitro. Mol. Cell. Biol.22, 7919–7928 (2002). ArticleCASPubMedPubMed Central Google Scholar
Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a Polycomb group protein complex. Science306, 1574–1577 (2004). ArticleCASPubMed Google Scholar
Moshkin, Y. M. et al. The bithorax complex of Drosophila melanogaster: Underreplication and morphology in polytene chromosomes. Proc. Natl Acad. Sci. USA98, 570–574 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhimulev, I. F. et al. Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma111, 377–398 (2003). ArticleCASPubMed Google Scholar
Ficz, G., Heintzmann, R. & Arndt-Jovin, D. J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development132, 3963–3976 (2005). The FRAP (fluorescence recovery after photobleaching) experiments that are described in this paper indicate that the binding of PcG to chromatin is highly dynamic. ArticleCASPubMed Google Scholar
Schlossherr, J., Eggert, H., Paro, R., Cremer, S. & Jack, R. S. Gene inactivation in Drosophila mediated by the Polycomb gene product or by position-effect variegation does not involve major changes in the accessibility of the chromatin fibre. Mol. Gen. Genet.243, 453–462 (1994). CASPubMed Google Scholar
McCall, K. & Bender, W. Probes of chromatin accessibility in the Drosophila bithorax complex respond differently to Polycomb-mediated repression. EMBO J.15, 569–580 (1996). ArticleCASPubMedPubMed Central Google Scholar
Boivin, A. & Dura, J. M. In vivo chromatin accessibility correlates with gene silencing in Drosophila. Genetics150, 1539–1549 (1998). CASPubMedPubMed Central Google Scholar
Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell13, 887–893 (2004). This paper shows that, at least in some cases, PcG silencing does not restrict the access of transcription activators or RNA POL II complex, but directly affects the function of transcription machinery that are bound at the promoter. ArticleCASPubMed Google Scholar
Mallin, D. R., Myung, J. S., Patton, J. S. & Geyer, P. K. Polycomb group repression is blocked by the Drosophila suppressor of Hairy-wing [su(Hw)] insulator. Genetics148, 331–339 (1998). CASPubMedPubMed Central Google Scholar
Comet, I. et al. PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter. Dev. Cell11, 117–124 (2006). ArticleCASPubMed Google Scholar
Muravyova, E. et al. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science291, 495–498 (2001). ArticleCASPubMed Google Scholar
Bloyer, S., Cavalli, G., Brock, H. W. & Dura, J. M. Identification and characterization of polyhomeotic PREs and TREs. Dev. Biol.261, 426–442 (2003). ArticleCASPubMed Google Scholar
Chinwalla, V., Jane, E. P. & Harte, P. J. The Drosophila Trithorax protein binds to specific chromosomal sites and is co-localized with Polycomb at many sites. EMBO J.14, 2056–2065 (1995). ArticleCASPubMedPubMed Central Google Scholar
Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. J. & Korsmeyer, S. J. Altered Hox expression and segmental identity in _Mll_-mutant mice. Nature378, 505–508 (1995). ArticleCASPubMed Google Scholar
Smith, S. T. et al. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nature Cell Biol.6, 162–167 (2004). ArticleCASPubMed Google Scholar
Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone H3 lysine 4. EMBO J.20, 7137–7148 (2001). ArticleCASPubMedPubMed Central Google Scholar
Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl Acad. Sci. USA 98, 12902–12907 (2001). ArticleCAS Google Scholar
Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell11, 721–729 (2003). ArticleCASPubMed Google Scholar
Steward, M. M. et al. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nature Struct. Mol. Biol.13, 852–854 (2006). ArticleCAS Google Scholar
Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nature Struct. Mol. Biol.13, 713–719 (2006). ArticleCAS Google Scholar
Chen, X., Hiller, M., Sancak, Y. & Fuller, M. T. Tissue-specific TAFs counteract Polycomb to turn on terminal differentiation. Science310, 869–872 (2005). ArticleCASPubMed Google Scholar
Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lessard, J. & Sauvageau, G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp. Hematol.31, 567–585 (2003). ArticleCASPubMed Google Scholar
Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). ArticleCASPubMed Google Scholar
Martinez, A. M., Colomb, S., Dejardin. J., Bantignies. F. & Cavalli, G. Polycomb group-dependent Cyclin A repression in Drosophila. Genes Dev.20, 501–513 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). This paper indicates that broad domains that are simultaneously enriched with trimethylated H3K27 and H3K4 mark PcG targets in mouse ES cells. This unusual chromatin state might be important for silencing of developmental genes in ES cells, while keeping them poised for activation. ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol.8, 532–538 (2006). ArticleCASPubMed Google Scholar
Hogga, I. & Karch, F. Transcription through the _iab-7 cis_-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development129, 4915–4922 (2002). CASPubMed Google Scholar
Bender, W. & Fitzgerald, D. P. Transcription activates repressed domains in the Drosophila bithorax complex. Development129, 4923–4930 (2002). CASPubMed Google Scholar
Rank, G., Prestel, M. & Paro, R. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol. Cell. Biol.22, 8026–8034 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev.19, 697–708 (2005). This work provides evidence that, at least under some circumstances, transcription through the PRE is necessary and sufficient for resetting its state into the positive maintenance element. ArticleCASPubMedPubMed Central Google Scholar
Dejardin, J. & Cavalli, G. Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J.23, 857–868 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sanchez-Elsner, T., Gou, D., Kremmer, E. & Sauer, F. Noncoding RNAs of Trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science311, 1118–1123 (2006). ArticleCASPubMed Google Scholar
Cavalli, G. & Paro, R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell93, 505–518 (1998). ArticleCASPubMed Google Scholar
Cavalli, G. & Paro, R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science286, 955–958 (1999). ArticleCASPubMed Google Scholar
Hadorn, E. in The Genetics and Biology of Drosophila Vol. 2c (eds Ashburner, M. & Wright, T. R. F.) 556–617 (Academic, New York, 1978). This posthumous article summarizes a decade of work on transdetermination in the author's laboratory, and describes the basic rules for changes in identity of regenerating imaginal discs. Google Scholar
Maves, L. & Schubiger, G. A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development125, 115–124 (1998). CASPubMed Google Scholar
Klebes, A. et al. Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development132, 3753–3765 (2005). ArticleCASPubMed Google Scholar
Lee, N., Maurange, C., Ringrose, L. & Paro, R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature438, 234–237 (2005). References 123–125 describe the analysis of events in the cells that change identity and explain that intense intercellular signalling suppresses PcG silencing and facilitates reprogramming of target genes. ArticleCASPubMed Google Scholar
Hobert, O., Jallal, B. & Ullrich, A. Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression. Mol. Cell. Biol.16, 3066–3073 (1996). ArticleCASPubMedPubMed Central Google Scholar
Witte, V. et al. HIV-1 Nef mimics an integrin receptor signal that recruits the polycomb group protein Eed to the plasma membrane. Mol. Cell13, 179–190 (2004). ArticleCASPubMed Google Scholar
Su, I. H. et al. Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell121, 425–436. References 126–128 report the remarkable exodus of PRC2 from the nucleus to the cytoplasm in response to the activation of certain signalling pathways. In reference 126, the cytoplasmic PRC2 is shown to be necessary for the ensuing remodelling of the actin cytoskeleton.
Voncken, J. W. et al. Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J. Cell Sci.112, 4627–4639 (1999). CASPubMed Google Scholar
Voncken, J. W. et al. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the Polycomb group protein Bmi1. J. Biol. Chem.280, 5178–5187 (2005). ArticleCASPubMed Google Scholar
Cha, T.-L. et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of Lysine 27 in histone H3. Science310, 306–310 (2005). ArticleCASPubMed Google Scholar
Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature432, 353–360 (2004). ArticleCASPubMed Google Scholar
Goodrich, J. et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature386, 44–51 (1997). ArticleCASPubMed Google Scholar
Grossniklaus, U., Vielle-Calzada, J., Hoeppner, M. A. & Gagliano, W. B. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science280, 446–450 (1998). ArticleCASPubMed Google Scholar
Gendall, A. R., Levy, Y. Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell107, 525–535 (2001). ArticleCASPubMed Google Scholar
Guitton, A. E. & Berger, F. Control of reproduction by Polycomb group complexes in animals and plants. Int. J. Dev. Biol.49, 707–716 (2005). ArticleCASPubMed Google Scholar
Hennig, L., Bouveret, R. & Gruissem, W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol.15, 295–302 (2005). ArticleCASPubMed Google Scholar
Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science296, 2235–2238 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kyba, M. & Brock H. W. The Drosophila Polycomb group protein Psc contacts Ph and Pc through specific conserved domains. Mol. Cell. Biol.18, 2712–2720 (1998). ArticleCASPubMedPubMed Central Google Scholar
Levine, S. S., King, I. F. G. & Kingston, R. E. Division of labor in Polycomb group repression. Trends Biochem. Sci.29, 478–485 (2004). ArticleCASPubMed Google Scholar
Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev.14, 155–164 (2004). ArticleCASPubMed Google Scholar
Nekrasov, M., Wild, B. & Muller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep.6, 348–353 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ketel, C. S. et al. Subunit contribution to the histone methyltransferase activities of fly and worm Polycomb group complexes. Mol. Cell. Biol.25, 6857–6868 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dellino, G. I., Tatout, C. & Pirrotta, V. Extensive conservation of sequences and chromatin structures in the bxd Polycomb response element among Drosophilid species. Int. J. Dev. Biol.46, 133–141 (2002). CASPubMed Google Scholar
Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and _cis_-element evolution. Genome Res.15, 1–18 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature403, 564–567 (2000). ArticleCASPubMed Google Scholar
Ludwig, M. Z. Functional evolution of noncoding DNA. Curr. Opin. Genet. Dev.12, 634–639 (2002). ArticleCASPubMed Google Scholar