Dosage compensation: the beginning and end of generalization (original) (raw)
Larsson, J. & Meller, V. H. Dosage compensation, the origin and the afterlife of sex chromosomes. Chromosome Res.14, 417–431 (2006). ArticleCASPubMed Google Scholar
Khil, P. P. & Camerini-Otero, R. D. Molecular features and functional constraints in the evolution of the mammalian X chromosome. Crit. Rev. Biochem. Mol. Biol.40, 313–330 (2005). ArticleCASPubMed Google Scholar
Vicoso, B. & Charlesworth, B. Evolution of the X chromosome: unusual patterns and processes. Nature Rev. Genet.7, 645–653 (2006). ArticleCASPubMed Google Scholar
Lucchesi, J. C., Kelly, W. G. & Panning, B. Chromatin remodeling in dosage compensation. Annu. Rev. Genet.39, 615–651 (2005). ArticleCASPubMed Google Scholar
Nguyen, D. K. & Disteche, C. M. Dosage compensation of the active X chromosome in mammals. Nature Genet.38, 47–53 (2006). References 6 and 7 describe large-scale microarray analyses revealing that, apart fromDrosophila melanogaster, upregulation of transcription from the single male X chromosome occurs inCaenorhabditis elegansand mammals. ArticleCASPubMed Google Scholar
Hamada, F. N., Park, P. J., Gordadze, P. R. & Kuroda, M. I. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev.19, 2289–2294 (2005). This study describes an expression microarray analysis which indicates that the increase in transcription of most of the X-linked genes by the MSL complex is graded rather than strictly twofold. ArticleCASPubMedPubMed Central Google Scholar
Straub, T., Gilfillan, G. D., Maier, V. K. & Becker, P. B. The Drosophila MSL complex activates the transcription of target genes. Genes Dev.19, 2284–2288 (2005). The first study to prove the direct link between MSL binding and increased expression of specific genes. ArticleCASPubMedPubMed Central Google Scholar
Alekseyenko, A. A., Larschan, E., Lai, W. R., Park, P. J. & Kuroda, M. I. High-resolution ChIP–chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev.20, 848–857 (2006). A comparative ChIP-on-chip tiling array study of MSL3 binding inD. melanogastercell lines and embryos favouring a transcription-based model of MSL complex recruitment. ArticleCASPubMedPubMed Central Google Scholar
Gilfillan, G. D. et al. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev.20, 858–870 (2006). MSL1 and RNA Polymerase II profiling using ChIP-on-chip tiling arrays inD. melanogasterembryos. Complex combinations of degenerate sequence motifs can in part explain the MSL binding pattern. ArticleCASPubMedPubMed Central Google Scholar
Legube, G., McWeeney, S. K., Lercher, M. J. & Akhtar, A. X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev.20, 871–883 (2006). A ChiP-on-cDNA array study comparing MSL1 distribution in different developmental stages and tissues ofD. melanogaster. The MSL binding pattern is stable and does not correlate with transcription. ArticleCASPubMedPubMed Central Google Scholar
Steinemann, M., Steinemann, S. & Turner, B. M. Evolution of dosage compensation. Chromosome Res.4, 185–190 (1996). ArticleCASPubMed Google Scholar
Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol.6, 149–162 (1996). ArticleCASPubMed Google Scholar
Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature190, 372–373 (1961). ArticleCASPubMed Google Scholar
Meyer, B. J. & Casson, L. P. Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell47, 871–881 (1986). ArticleCASPubMed Google Scholar
Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev.20, 1848–1867 (2006). ArticleCASPubMed Google Scholar
Chadwick, B. P. & Willard, H. F. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum. Mol. Genet.12, 2167–2178 (2003). ArticleCASPubMed Google Scholar
Mak, W. et al. Mitotically stable association of Polycomb group proteins eed and enx1 with the inactive X chromosome in trophoblast stem cells. Curr. Biol.12, 1016–1020 (2002). ArticleCASPubMed Google Scholar
Costanzi, C. & Pehrson, J. R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature393, 599–601 (1998). ArticleCASPubMed Google Scholar
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science211, 393–396 (1981). ArticleCASPubMed Google Scholar
Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T. J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol.327, 85–96 (2003). ArticleCASPubMed Google Scholar
Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science311, 844–847 (2006). ArticleCASPubMed Google Scholar
Deuring, R. et al. The ISWI chromatin remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell5, 355–365 (2000). ArticleCASPubMed Google Scholar
Badenhorst, P., Voas, M., Rebay, I. & Wu, C. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev.16, 3186–3198 (2002). ArticleCASPubMedPubMed Central Google Scholar
Corona, D. F., Clapier, C. R., Becker, P. B. & Tamkun, J. W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep.3, 242–247 (2002). ArticleCASPubMedPubMed Central Google Scholar
Deng, H. et al. The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma114, 173–182 (2005). ArticleCASPubMed Google Scholar
Meyer, B. J., McDonel, P., Csankovszki, G. & Ralston, E. Sex and X-chromosome-wide repression in Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol.69, 71–79 (2004). ArticleCASPubMed Google Scholar
Chu, D. S. et al. A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev.16, 796–805 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bai, X., Alekseyenko, A. A. & Kuroda, M. I. Sequence-specific targeting of MSL complex regulates transcription of the roX RNA genes. EMBO J.23, 2853–2861 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rattner, B. P. & Meller, V. H. Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. Genetics166, 1825–1832 (2004). ArticleCASPubMedPubMed Central Google Scholar
Straub, T. et al. Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma114, 352–364 (2005). ArticlePubMed Google Scholar
Li, F., Parry, D. A. & Scott, M. J. The amino-terminal region of Drosophila MSL1 contains basic, glycine-rich, and leucine zipper-like motifs that promote X chromosome binding, self-association, and MSL2 binding, respectively. Mol. Cell. Biol.25, 8913–8924 (2005). ArticleCASPubMedPubMed Central Google Scholar
Buscaino, A., Legube, G. & Akhtar, A. X-chromosome targeting and dosage compensation are mediated by distinct domains in MSL-3. EMBO Rep.7, 531–538 (2006). CASPubMedPubMed Central Google Scholar
Morales, V. et al. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J.23, 2258–2268 (2004). ArticleCASPubMedPubMed Central Google Scholar
Morales, V., Regnard, C., Izzo, A., Vetter, I. & Becker, P. B. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol. Cell. Biol.25, 5947–5954 (2005). ArticleCASPubMedPubMed Central Google Scholar
Akhtar, A. & Becker, P. B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell5, 367–375 (2000). ArticleCASPubMed Google Scholar
Buscaino, A. et al. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol. Cell11, 1265–1277 (2003). ArticleCASPubMed Google Scholar
Smith, E. R. et al. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell. Biol.25, 9175–9188 (2005). ArticleCASPubMedPubMed Central Google Scholar
Taipale, M. et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol.25, 6798–6810 (2005). ArticleCASPubMedPubMed Central Google Scholar
Stuckenholz, C., Meller, V. H. & Kuroda, M. I. Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics164, 1003–1014 (2003). CASPubMedPubMed Central Google Scholar
Deng, X., Rattner, B. P., Souter, S. & Meller, V. H. The severity of roX1 mutations is predicted by MSL localization on the X chromosome. Mech. Dev.122, 1094–1105 (2005). ArticleCASPubMed Google Scholar
Meller, V. H. Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs. Mech. Dev.120, 759–767 (2003). ArticleCASPubMed Google Scholar
Lerach, S. et al. JIL-1 kinase, a member of the male-specific lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila. Genesis43, 213–215 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev.18, 2973–2983 (2004). ArticleCASPubMedPubMed Central Google Scholar
Spierer, A., Seum, C., Delattre, M. & Spierer, P. Loss of the modifiers of variegation Su(var)3-7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J. Cell Sci.118, 5047–5057 (2005). ArticleCASPubMed Google Scholar
Delattre, M., Spierer, A., Jaquet, Y. & Spierer, P. Increased expression of Drosophila Su(var)3-7 triggers Su(var)3-9-dependent heterochromatin formation. J. Cell Sci.117, 6239–6247 (2004). ArticleCASPubMed Google Scholar
Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell21, 811–823 (2006). The identification of novel interactors of the MOF acetyl transferase uncovers an important role for nuclear pores inD. melanogasterdosage compensation. ArticleCASPubMed Google Scholar
Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121, 873–885 (2005). ArticleCASPubMed Google Scholar
Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature441, 774–778 (2006). ArticleCASPubMed Google Scholar
Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature441, 770–773 (2006). ArticleCASPubMed Google Scholar
Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev.20, 2223–2237 (2006). ArticleCASPubMedPubMed Central Google Scholar
Straub, T., Dahlsveen, I. K. & Becker, P. B. Dosage compensation in flies: mechanism, models, mystery. FEBS Lett.579, 3258–3263 (2005). ArticleCASPubMed Google Scholar
Nusinow, D. A. & Panning, B. Recognition and modification of seX chromosomes. Curr. Opin. Genet. Dev.15, 206–213 (2005). ArticleCASPubMed Google Scholar
Csankovszki, G., McDonel, P. & Meyer, B. J. Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science303, 1182–1185 (2004). A two-step process of binding and spreading operates to cover the worm X chromosome with DCC. ArticleCASPubMed Google Scholar
Heard, E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev.15, 482–489 (2005). ArticleCASPubMed Google Scholar
Russell, L. B. Mammalian X chromosome action: inactivation limited in spread and region of origin. _Scienc_e 140, 976–978 (1963). ArticleCAS Google Scholar
Popova, B. C., Tada, T., Takagi, N., Brockdorff, N. & Nesterova, T. B. Attenuated spread of X-inactivation in an X;autosome translocation. Proc. Natl Acad. Sci. USA103, 7706–7711 (2006). ArticleCASPubMedPubMed Central Google Scholar
Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature434, 400–404 (2005). A chromosome-wide analysis of genes that escape X-chromosome inactivation in humans. The distribution of escapers along the chromosome correlates with its evolutionary history. ArticleCASPubMed Google Scholar
Fagegaltier, D. & Baker, B. S. X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males. PLoS Biol.2, e341 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Oh, H., Bai, X., Park, Y., Bone, J. R. & Kuroda, M. I. Targeting dosage compensation to the X chromosome of Drosophila males. Cold Spring Harb. Symp. Quant. Biol.69, 81–88 (2004). ArticleCASPubMed Google Scholar
Dahlsveen, I. K., Gilfillan, G. D., Shelest, V. I., Lamm, R. & Becker, P. B. Targeting determinants of dosage compensation in Drosophila. PLoS Genet.2, e5 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Demakova, O. V. et al. The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma112, 103–115 (2003). ArticleCASPubMed Google Scholar
Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics85, 1–15 (2005). ArticleCASPubMed Google Scholar
Park, Y. et al. et al. Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex. Mol. Cell11, 977–986 (2003). ArticleCASPubMed Google Scholar
Singh, N. D., Davis, J. C. & Petrov, D. A. Codon bias and noncoding GC content correlate negatively with recombination rate on the Drosophila X chromosome. J. Mol. Evol.61, 315–324 (2005). ArticleCASPubMed Google Scholar
Sass, G. L., Pannuti, A. & Lucchesi, J. C. Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling. Proc. Natl Acad. Sci. USA100, 8287–8291 (2003). This is the only study so far that shows directly that theD. melanogasterDCC can be recruitedde novofollowing transcription activation. ArticleCASPubMedPubMed Central Google Scholar
Saunders, A., Leighton, J. C. & Lis, J. T. Breaking barriers to transcription elongation. Nature Rev. Mol. Cell Biol.7, 557–567 (2006). ArticleCAS Google Scholar
Sims, R. J. 3rd, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev.18, 2437–2468 (2004). ArticleCASPubMed Google Scholar
Kageyama, Y. et al. Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J.20, 2236–2245 (2001). ArticleCASPubMedPubMed Central Google Scholar
Oh, H., Bone, J. R. & Kuroda, M. I. Multiple classes of MSL binding sites target dosage compensation to the X chromosome of Drosophila. Curr. Biol.14, 481–487 (2004). ArticleCASPubMed Google Scholar
Kotlikova, I. V. et al. The Drosophila dosage compensation complex binds to polytene chromosomes independently of developmental changes in transcription. Genetics172, 963–974 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gu, W., Wei, X., Pannuti, A. & Lucchesi, J. C. Targeting the chromatin remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J.19, 5202–5211 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet.37, 1090–1097 (2005). ArticleCASPubMed Google Scholar
Kristjuhan, A. & Svejstrup, J. Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J.23, 4243–4252 (2004). ArticleCASPubMedPubMed Central Google Scholar
O'Sullivan, J. M. et al. Gene loops juxtapose promoters and terminators in yeast. Nature Genet.36, 1014–1018 (2004). ArticleCASPubMed Google Scholar
Hagstrom, K. A. & Meyer, B. J. Condensin and cohesin: more than chromosome compactor and glue. Nature Rev. Genet.4, 520–534 (2003). ArticleCASPubMed Google Scholar
Krogan, N. J. et al. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem.277, 10753–10755 (2002). ArticleCASPubMed Google Scholar
Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J.20, 7137–7148 (2001). ArticleCASPubMedPubMed Central Google Scholar
McDonel, P., Jans, J., Peterson, B. K. & Meyer, B. J. Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature 19 November 2006 (doi:10.1038/nature05338).