A genomic view of mosaicism and human disease (original) (raw)
Strachan, T. & Read, A. P. Human Molecular Genetics (Garland Science, 2011). Google Scholar
Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nature Rev. Genet.13, 565–575 (2012). ArticleCASPubMed Google Scholar
Carlson, B. M. Human Embryology and Developmental Biology (Elsevier/Saunders, 2013). Google Scholar
Tjio, J. H. & Nichols, W. W. History and present status of human chromosome studies. In Vitro Cell Dev. Biol.21, 305–313 (1985). ArticleCASPubMed Google Scholar
Antonarakis, S. E., Phillips, J. A. & Kazazian, H. H. Jr. Genetic diseases: diagnosis by restriction endonuclease analysis. J. Pediatr.100, 845–856 (1982). ArticleCASPubMed Google Scholar
Boehm, J. S. & Hahn, W. C. Towards systematic functional characterization of cancer genomes. Nature Rev. Genet.12, 487–498 (2011). ArticleCASPubMed Google Scholar
Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet.13, 189–203 (2012). ArticleCASPubMed Google Scholar
Crowe, F. W., Schull, W. J. & Neel, J. V. A Clinical, Pathological and Genetic Study of Multiple Neurofibromatosis (Charles C. Thomas, 1956). Google Scholar
Happle, R. Mosaicism in human skin. Understanding the patterns and mechanisms. Arch. Dermatol.129, 1460–1470 (1993). This paper summarizes the data for a number of mosaic dermatological disorders and lays out the hypothesis for lethal genes manifesting as mosaic disorders. ArticleCASPubMed Google Scholar
Callum, P. et al. Gonosomal mosaicism for an NF1 deletion in a sperm donor: evidence of the need for coordinated, long-term communication of health information among relevant parties. Hum. Reprod.27, 1223–1226 (2012). ArticleCASPubMed Google Scholar
Maertens, O. et al. Molecular dissection of isolated disease features in mosaic neurofibromatosis type 1. Am. J. Hum. Genet.81, 243–251 (2007). ArticleCASPubMedPubMed Central Google Scholar
Messiaen, L. et al. Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat.32, 213–219 (2011). ArticleCASPubMed Google Scholar
Lee, N. P. et al. Identification of clinically relevant mosaicism in type I hereditary haemorrhagic telangiectasia. J. Med. Genet.48, 353–357 (2011). ArticleCASPubMed Google Scholar
Best, D. H. et al. Mosaic ACVRL1 and ENG mutations in hereditary haemorrhagic telangiectasia patients. J. Med. Genet.48, 358–360 (2011). ArticleCASPubMed Google Scholar
Harboe, T. L. et al. Mosaicism in segmental Darier disease: an in-depth molecular analysis quantifying proportions of mutated alleles in various tissues. Dermatology222, 292–296 (2011). ArticlePubMed Google Scholar
Happle, R. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J. Am. Acad. Dermatol.16, 899–906 (1987). ArticleCASPubMed Google Scholar
McCune, D. & Bruch, H. Progress in pediatrics: osteodystrophia fibrosa. Am. J. Dis. Child54, 806–848 (1937). Article Google Scholar
Albright, F., Butle, A. M., Hampton, A. O. & Smith, P. Syndrome characterized by osteitis fibrosa disseminata, areas of pigmentation and endocrine dysfunction, with precocious puberty in females: report of five cases. N. Engl. J. Med.216, 727–746 (1937). Article Google Scholar
Happle, R. The McCune–Albright syndrome: a lethal gene surviving by mosaicism. Clin. Genet.29, 321–324 (1986). ArticleCASPubMed Google Scholar
Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med.325, 1688–1695 (1991). This is the landmark paper that describes the identification of mosaic mutations that cause the McCune–Albright syndrome. ArticleCASPubMed Google Scholar
Wiedemann, H. R. et al. The Proteus syndrome. Partial gigantism of the hands and/or feet, nevi, hemihypertrophy, subcutaneous tumors, macrocephaly or other skull anomalies and possible accelerated growth and visceral affections. Eur. J. Pediatr.140, 5–12 (1983). ArticleCASPubMed Google Scholar
Happle, R. How many epidermal nevus syndromes exist? A clinicogenetic classification. J. Am. Acad. Dermatol.25, 550–556 (1991). ArticleCASPubMed Google Scholar
Wallis, G. A., Starman, B. J., Zinn, A. B. & Byers, P. H. Variable expression of osteogenesis imperfecta in a nuclear family is explained by somatic mosaicism for a lethal point mutation in the alpha 1(I) gene (COL1A1) of type I collagen in a parent. Am. J. Hum. Genet.46, 1034–1040 (1990). CASPubMedPubMed Central Google Scholar
Williams, C. J. & Prockop, D. J. Synthesis and processing of a type I procollagen containing shortened pro-alpha 1(I) chains by fibroblasts from a patient with osteogenesis imperfecta. J. Biol. Chem.258, 5915–5921 (1983). ArticleCASPubMed Google Scholar
Lamande, S. R., Dahl, H. H., Cole, W. G. & Bateman, J. F. Characterization of point mutations in the collagen COL1A1 and COL1A2 genes causing lethal perinatal osteogenesis imperfecta. J. Biol. Chem.264, 15809–15812 (1989). ArticleCASPubMed Google Scholar
Byers, P. H., Tsipouras, P., Bonadio, J. F., Starman, B. J. & Schwartz, R. C. Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. Am. J. Hum. Genet.42, 237–248 (1988). CASPubMedPubMed Central Google Scholar
Goriely, A. & Wilkie, A. O. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am. J. Hum. Genet.90, 175–200 (2012). This review elegantly summarizes the disorders that manifest a paternal age effect and the biological basis of this phenomenon. ArticleCASPubMedPubMed Central Google Scholar
Conlin, L. K. et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet.19, 1263–1275 (2010). This paper demonstrates the utility of the SNP array for detection of mosaicism and elucidation of the mechanisms by which the mosaicism arises. ArticleCASPubMedPubMed Central Google Scholar
Gottlieb, B., Beitel, L. K., Alvarado, C. & Trifiro, M. A. Selection and mutation in the “new” genetics: an emerging hypothesis. Hum. Genet.127, 491–501 (2010). ArticleCASPubMed Google Scholar
Hirschhorn, K., Decker, W. H. & Cooper, H. L. Human intersex with chromosome mosaicism of type XY/XO. Report of a case. N. Engl. J. Med.263, 1044–1048 (1960). ArticleCASPubMed Google Scholar
Erickson, R. P. Somatic gene mutation and human disease other than cancer: an update. Mutat. Res.705, 96–106 (2010). ArticleCASPubMed Google Scholar
Hook, E. B. Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am. J. Hum. Genet.29, 94–97 (1977). CASPubMedPubMed Central Google Scholar
Rodriguez-Santiago, B. et al. Mosaic uniparental disomies and aneuploidies as large structural variants of the human genome. Am. J. Hum. Genet.87, 129–138 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bras, J., Guerreiro, R. & Hardy, J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nature Rev. Neurosci.13, 453–464 (2012). ArticleCAS Google Scholar
Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet.24, 133–141 (2008). This is a thorough review of the basics of NGS technologies that underlie many of the recent discoveries of mosaic disorders. ArticleCASPubMed Google Scholar
Miller, J. F. et al. Fetal loss after implantation. A prospective study. Lancet2, 554–556 (1980). ArticleCASPubMed Google Scholar
Hassold, T. et al. Human aneuploidy: incidence, origin, and etiology. Environ. Mol. Mutagen.28, 167–175 (1996). ArticleCASPubMed Google Scholar
Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nature Med.15, 577–583 (2009). This paper uses array CGH to reveal the surprisingly high frequency of chromosome abnormalities in the very early embryo. ArticleCASPubMed Google Scholar
Daber, R. et al. Mosaic trisomy 17: variable clinical and cytogenetic presentation. Am. J. Med. Genet. A155, 2489–2495 (2011). ArticleCAS Google Scholar
Conlin, L. K. et al. Molecular analysis of ring chromosome 20 syndrome reveals two distinct groups of patients. J. Med. Genet.48, 1–9 (2011). ArticleCASPubMed Google Scholar
Hsu, L. Y. et al. Incidence and significance of chromosome mosaicism involving an autosomal structural abnormality diagnosed prenatally through amniocentesis: a collaborative study. Prenat. Diagn.16, 1–28 (1996). ArticleCASPubMed Google Scholar
Kelker, W. et al. Loss of 18q and homozygosity for the DCC locus: possible markers for clinically aggressive squamous cell carcinoma. Anticancer Res.16, 2365–2372 (1996). CASPubMed Google Scholar
Gijsbers, A. C. et al. Three new cases with a mosaicism involving a normal cell line and a cryptic unbalanced autosomal reciprocal translocation. Eur. J. Med. Genet.54, e409–e412 (2011). ArticlePubMed Google Scholar
Robberecht, C. et al. Meiotic errors followed by two parallel postzygotic trisomy rescue events are a frequent cause of constitutional segmental mosaicism. Mol. Cytogenet.5, 19 (2012). ArticlePubMedPubMed Central Google Scholar
Hook, E. B. & Warburton, D. The distribution of chromosomal genotypes associated with Turner's syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum. Genet.64, 24–27 (1983). ArticleCASPubMed Google Scholar
Raffel, L. J., Mohandas, T. & Rimoin, D. L. Chromosomal mosaicism in the Killian/Teschler-Nicola syndrome. Am. J. Med. Genet.24, 607–611 (1986). ArticleCASPubMed Google Scholar
Ballif, B. C. et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am. J. Med. Genet. A140, 2757–2767 (2006). ArticlePubMed Google Scholar
Cheung, S. W. et al. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am. J. Med. Genet. A143, 1679–1686 (2007). Article Google Scholar
Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nature Genet.44, 642–650 (2012). ArticleCASPubMed Google Scholar
Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genet.44, 651–658 (2012). ArticleCASPubMed Google Scholar
Piotrowski, A. et al. Somatic mosaicism for copy number variation in differentiated human tissues. Hum. Mutat.29, 1118–1124 (2008). This work investigates the frequency of copy number alterations in over 30 tissue samples from the same individual, revealing alterations that occur in only a single tissue in some cases, demonstrating the potential importance of tissue-specific mosaicism for human disease. ArticlePubMed Google Scholar
Bruder, C. E. et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet.82, 763–771 (2008). ArticleCASPubMedPubMed Central Google Scholar
Breckpot, J. et al. Differences in copy number variation between discordant monozygotic twins as a model for exploring chromosomal mosaicism in congenital heart defects. Mol. Syndromol.2, 81–87 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hafner, C. et al. Keratinocytic epidermal nevi are associated with mosaic RAS mutations. J. Med. Genet.49, 249–253 (2012). ArticleCASPubMed Google Scholar
Hafner, C. et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc. Natl Acad. Sci. USA104, 13450–13454 (2007). A candidate gene approach identifiesPIK3CAas the cause of several mosaic dermatologic lesions. This is the first of a series of papers that demonstrates the importance of this pathway in mosaic dermatological disorders. ArticleCASPubMedPubMed Central Google Scholar
Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. New Engl. J. Med.365, 611–619 (2011). Here, the authors describe the first application of NGS to mosaic disorders in humans in a disorder that most famously afflicted Joseph Carey Merrick. ArticleCASPubMed Google Scholar
Lee, J. H. et al. De novo somatic mutations in components of the PI3K–AKT3–mTOR pathway cause hemimegalencephaly. Nature Genet.44, 941–945 (2012). ArticleCASPubMed Google Scholar
Riviere, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nature Genet.44, 934–940 (2012). ArticleCASPubMed Google Scholar
Lindhurst, M. J. et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nature Genet.44, 928–933 (2012). ArticleCASPubMed Google Scholar
Groesser, L. et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nature Genet.44, 783–787 (2012). ArticleCASPubMed Google Scholar
Treon, S. P. et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N. Engl. J. Med.367, 826–833 (2012). ArticleCASPubMed Google Scholar
Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell78, 335–342 (1994). ArticleCASPubMed Google Scholar
Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature371, 252–254 (1994). ArticleCASPubMed Google Scholar
Choate, K. A. et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science330, 94–97 (2010). This work documents the startling finding of the role of mitotic recombination in revertant mosaicism by demonstration of the correlation with normal patches of skin in a patient with icthyosis (and a documented mutation) with a normal genotype. ArticleCASPubMedPubMed Central Google Scholar
Jonkman, M. F. & Pasmooij, A. M. Realm of revertant mosaicism expanding. J. Invest. Dermatol.132, 514–516 (2012). ArticleCASPubMed Google Scholar
Kearney, H. M., Kearney, J. B. & Conlin, L. K. Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: consanguinity, uniparental disomy, and recessive single-gene mutations. Clin. Lab. Med.31, 595–613 (2011). ArticlePubMed Google Scholar
Lindstrom, D. L., Leverich, C. K., Henderson, K. A. & Gottschling, D. E. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet.7, e1002015 (2011). ArticleCASPubMedPubMed Central Google Scholar
Romanelli, V. et al. Beckwith–Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques. Eur. J. Hum. Genet.19, 416–421 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cooper, W. N., Curley, R., Macdonald, F. & Maher, E. R. Mitotic recombination and uniparental disomy in Beckwith–Wiedemann syndrome. Genomics89, 613–617 (2007). ArticleCASPubMed Google Scholar
Markert, C. L. & Petters, R. M. Manufactured hexaparental mice show that adults are derived from three embyronic cells. Science202, 56–58 (1978). ArticleCASPubMed Google Scholar
Kalousek, D. K. & Vekemans, M. Confined placental mosaicism and genomic imprinting. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol.14, 723–730 (2000). ArticleCASPubMed Google Scholar
Hoornaert, K. P. et al. The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene. J. Med. Genet.43, 406–413 (2006). ArticleCASPubMed Google Scholar
Kingsbury, M. A., Yung, Y. C., Peterson, S. E., Westra, J. W. & Chun, J. Aneuploidy in the normal and diseased brain. Cell. Mol. Life Sci.63, 2626–2641 (2006). ArticleCASPubMed Google Scholar
Gollob, M. H. et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. J. Med.354, 2677–2688 (2006). ArticleCASPubMed Google Scholar
Malan, V., Vekemans, M. & Turleau, C. Chimera and other fertilization errors. Clin. Genet.70, 363–373 (2006). ArticleCASPubMed Google Scholar
Winberg, J. et al. Chimerism resulting from parthenogenetic activation and dispermic fertilization. Am. J. Med. Genet. A152, 2277–2286 (2010). Article Google Scholar
Yamazawa, K. et al. Parthenogenetic chimaerism/mosaicism with a Silver–Russell syndrome-like phenotype. J. Med. Genet.47, 782–785 (2010). ArticleCASPubMed Google Scholar
Shin, S. Y., Yoo, H. W., Lee, B. H., Kim, K. S. & Seo, E. J. Identification of the mechanism underlying a human chimera by SNP array analysis. Am. J. Med. Genet. A158, 2119–2123 (2012). ArticleCAS Google Scholar
Wilson, M. et al. The clinical phenotype of mosaicism for genome-wide paternal uniparental disomy: two new reports. Am. J. Med. Genet. A146, 137–148 (2008). ArticleCAS Google Scholar
Romanelli, V. et al. Constitutional mosaic genome-wide uniparental disomy due to diploidisation: an unusual cancer-predisposing mechanism. J. Med. Genet.48, 212–216 (2011). ArticlePubMed Google Scholar
Yu, N. et al. Disputed maternity leading to identification of tetragametic chimerism. N. Engl. J. Med.346, 1545–1552 (2002). ArticlePubMed Google Scholar
Vogt, J. et al. Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Hum. Mutat.32, E2134–E2147 (2011). ArticleCASPubMed Google Scholar
Kaplan, L. et al. Monozygotic twins discordant for neurofibromatosis 1. Am. J. Med. Genet. A152, 601–606 (2010). Article Google Scholar
Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA102, 10604–10609 (2005). ArticleCASPubMedPubMed Central Google Scholar
Harder, A. et al. Monozygotic twins with neurofibromatosis type 1 (NF1) display differences in methylation of NF1 gene promoter elements, 5′ untranslated region, exon and intron 1. Twin Res. Hum. Genet.13, 582–594 (2010). ArticlePubMed Google Scholar
Conlin, L. K. et al. Utility of SNP arrays in detecting, quantifying, and determining meiotic origin of tetrasomy 12p in blood from individuals with Pallister–Killian syndrome. Am. J. Med. Genet. A158, 3046–3053 (2012). ArticleCAS Google Scholar