Causes and consequences of aneuploidy in cancer (original) (raw)
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nature Rev. Cancer7, 233–245 (2007). CAS Google Scholar
Ricke, R. M., van Ree, J. H. & van Deursen, J. M. Whole chromosome instability and cancer: a complex relationship. Trends Genet.24, 457–466 (2008). CASPubMedPubMed Central Google Scholar
Teixeira, M. R. & Heim, S. Multiple numerical chromosome aberrations in cancer: what are their causes and what are their consequences? Semin. Cancer Biol.15, 3–12 (2005). CASPubMed Google Scholar
Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer10, 102–115 (2010). CAS Google Scholar
Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genet.36, 1159–1161 (2004). CASPubMed Google Scholar
Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol.20, R285–R295 (2010). CASPubMedPubMed Central Google Scholar
Chandhok, N. S. & Pellman, D. A little CIN may cost a lot: revisiting aneuploidy and cancer. Curr. Opin. Genet. Dev.19, 74–81 (2009). CASPubMed Google Scholar
Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature463, 899–905 (2010). This study shows that one-quarter of the genome of a typical cancer cell is affected by either whole-arm or whole-chromosome somatic copy number alterations. CASPubMedPubMed Central Google Scholar
Mitelman, F., Johannson, B. & Mertens, F. Mitelman Database of Chromosome Aberrations in Cancer[online], (2012).
Ozery-Flato, M., Linhart, C., Trakhtenbrot, L., Izraeli, S. & Shamir, R. Large-scale analysis of chromosomal aberrations in cancer karyotypes reveals two distinct paths to aneuploidy. Genome Biol.12, R61 (2011). PubMedPubMed Central Google Scholar
Barnard, D. R. et al. Morphologic, immunologic, and cytogenetic classification of acute myeloid leukemia and myelodysplastic syndrome in childhood: a report from the Childrens Cancer Group. Leukemia10, 5–12 (1996). CASPubMed Google Scholar
Maurici, D. et al. Frequency and implications of chromosome 8 and 12 gains in Ewing sarcoma. Cancer Genet. Cytogenet.100, 106–110 (1998). CASPubMed Google Scholar
Qi, H. et al. Trisomies 8 and 20 in desmoid tumors. Cancer Genet. Cytogenet.92, 147–149 (1996). CASPubMed Google Scholar
Barnard, D. R. et al. Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood100, 427–434 (2002). CASPubMed Google Scholar
Paulsson, K. & Johansson, B. Trisomy 8 as the sole chromosomal aberration in acute myeloid leukemia and myelodysplastic syndromes. Pathol. Biol.55, 37–48 (2007). CASPubMed Google Scholar
Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol.180, 665–672 (2008). CASPubMedPubMed Central Google Scholar
Cimini, D., Tanzarella, C. & Degrassi, F. Differences in malsegregation rates obtained by scoring ana-telophases or binucleate cells. Mutagenesis14, 563–568 (1999). CASPubMed Google Scholar
Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta1786, 32–40 (2008). CASPubMed Google Scholar
Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol.153, 517–527 (2001). CASPubMedPubMed Central Google Scholar
Gregan, J., Polakova, S., Zhang, L., Tolic´-Nørrelykke, I. M. & Cimini, D. Merotelic kinetochore attachment: causes and effects. Trends Cell Biol.21, 374–381 (2011). CASPubMedPubMed Central Google Scholar
Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature460, 278–282 (2009). This study provides a mechanistic link between extra centrosomes and CIN by demonstrating that supernumerary centrosomes increase the frequency of merotelic attachments and chromosome segregation errors. CASPubMedPubMed Central Google Scholar
Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE4, e6564 (2009). PubMedPubMed Central Google Scholar
Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol.19, 1937–1942 (2009). CASPubMedPubMed Central Google Scholar
Tada, K., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature474, 477–483 (2011). CASPubMed Google Scholar
Corbett, K. D. et al. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell142, 556–567 (2010). CASPubMedPubMed Central Google Scholar
Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biol.11, 27–35 (2009). CASPubMed Google Scholar
Nigg, E. A. Origins and consequences of centrosome aberrations in human cancers. Int. J. Cancer119, 2717–2723 (2006). CASPubMed Google Scholar
Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res.58, 3974–3985 (1998). CASPubMed Google Scholar
Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res.63, 1398–1404 (2003). CASPubMed Google Scholar
Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer2, 815–825 (2002). CAS Google Scholar
Boveri, T. The Origin of Malignant Tumors (Waverly Press, Baltimore, Maryland, 1929). Google Scholar
Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nature Rev. Mol. Cell Biol.10, 478–487 (2009). CAS Google Scholar
Brinkley, B. R. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol.11, 18–21 (2001). CASPubMed Google Scholar
Ring, D., Hubble, R. & Kirschner, M. Mitosis in a cell with multiple centrioles. J. Cell Biol.94, 549–556 (1982). CASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature386, 623–627 (1997). CASPubMed Google Scholar
Rajagopalan, H., Nowak, M. A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nature Rev. Cancer3, 695–701 (2003). CAS Google Scholar
Cahill, D. P. et al. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics58, 181–187 (1999). CASPubMed Google Scholar
Haruki, N. et al. Molecular analysis of the mitotic checkpoint genes BUB1, BUBR1 and BUB3 in human lung cancers. Cancer Lett.162, 201–205 (2001). CASPubMed Google Scholar
Myrie, K. A., Percy, M. J., Azim, J. N., Neeley, C. K. & Petty, E. M. Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett.152, 193–199 (2000). CASPubMed Google Scholar
Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer5, 773–785 (2005). CAS Google Scholar
Wang, Z. et al. Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res.64, 2998–3001 (2004). CASPubMed Google Scholar
Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell14, 111–122 (2008). CASPubMed Google Scholar
Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep.2, 609–614 (2001). CASPubMedPubMed Central Google Scholar
Haruta, M. et al. Combined BubR1 protein down-regulation and RASSF1A hypermethylation in Wilms tumors with diverse cytogenetic changes. Mol. Carcinog.47, 660–666 (2008). CASPubMed Google Scholar
Park, H. Y. et al. Differential promoter methylation may be a key molecular mechanism in regulating BubR1 expression in cancer cells. Exp. Mol. Med.39, 195–204 (2007). CASPubMed Google Scholar
Morgan, D. O. The Cell Cycle: Principles of Control (Sinauer Associates, Sunderland, Maryland, 2007). Google Scholar
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol.8, 379–393 (2007). CAS Google Scholar
Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl Acad. Sci. USA105, 3443–3448 (2008). CASPubMedPubMed Central Google Scholar
Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science333, 1039–1043 (2011). CASPubMedPubMed Central Google Scholar
Dorsett, D. Cohesin: genomic insights into controlling gene transcription and development. Curr. Opin. Genet. Dev.21, 199–206 (2011). CASPubMedPubMed Central Google Scholar
Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science317, 916–924 (2007). This study uses a chromosome transfer strategy and selectable markers to generate isogenic aneuploid yeast strains with a single extra chromosome. CASPubMed Google Scholar
Sheltzer, J. M. et al. Aneuploidy drives genomic instability in yeast. Science333, 1026–1030 (2011). This study shows that aneuploidy in yeast can generate genomic instability, including increased chromosome loss, mutation rate and defective DNA damage repair. CASPubMedPubMed Central Google Scholar
Niwa, O., Tange, Y. & Kurabayashi, A. Growth arrest and chromosome instability in aneuploid yeast. Yeast23, 937–950 (2006). CASPubMed Google Scholar
Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science322, 703–709 (2008). This study establishes and characterizes isogenic MEF cell lines that are trisomic for chromosomes 1, 13, 16 or 19 using balanced Robertsonian translocations. CASPubMedPubMed Central Google Scholar
Rasmussen, S. A., Wong, L. Y., Yang, Q., May, K. M. & Friedman, J. M. Population-based analyses of mortality in trisomy 13 and trisomy 18. Pediatrics111, 777–784 (2003). PubMed Google Scholar
Segal, D. J. & McCoy, E. E. Studies on Down's syndrome in tissue culture. I. Growth rates and protein contents of fibroblast cultures. J. Cell Physiol.83, 85–90 (1974). CASPubMed Google Scholar
Taylor, A. I. Cell selection in vivo in normal-G trisomic mosaics. Nature219, 1028–1030 (1968). CASPubMed Google Scholar
Yurov, Y. B. et al. Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS ONE2, e558 (2007). PubMedPubMed Central Google Scholar
Yurov, Y. B. et al. The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J. Histochem. Cytochem.53, 385–390 (2005). CASPubMed Google Scholar
Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell11, 4241–4257 (2000). CASPubMedPubMed Central Google Scholar
Pavelka, N. et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature468, 321–325 (2010). This study describes the induction of meiosis in yeast strains with an odd ploidy (3N or 5N) to produce isogenic aneuploid strains. CASPubMedPubMed Central Google Scholar
ElBaradi, T. T., van der Sande, C. A., Mager, W. H., Raue, H. A. & Planta, R. J. The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein. Curr. Genet.10, 733–739 (1986). CASPubMed Google Scholar
Maicas, E., Pluthero, F. G. & Friesen, J. D. The accumulation of three yeast ribosomal proteins under conditions of excess mRNA is determined primarily by fast protein decay. Mol. Cell. Biol.8, 169–175 (1988). CASPubMedPubMed Central Google Scholar
Collier, T. S. et al. Comparison of stable-isotope labeling with amino acids in cell culture and spectral counting for relative quantification of protein expression. Rapid Commun. Mass Spectrom.25, 2524–2532 (2011). CASPubMed Google Scholar
Collier, T. S. et al. Direct comparison of stable isotope labeling by amino acids in cell culture and spectral counting for quantitative proteomics. Anal. Chem.82, 8696–8702 (2010). CASPubMed Google Scholar
St. Charles, J., Hamilton, M. L. & Petes, T. D. Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics186, 537–550 (2010). CASPubMed Google Scholar
Storchova, Z. et al. Genome-wide genetic analysis of polyploidy in yeast. Nature443, 541–547 (2006). CASPubMed Google Scholar
Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev.17, 157–162 (2007). CASPubMed Google Scholar
Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol.188, 369–381 (2010). CASPubMedPubMed Central Google Scholar
Tomasini, R., Mak, T. W. & Melino, G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol.18, 244–252 (2008). CASPubMed Google Scholar
Bunz, F. et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res.62, 1129–1133 (2002). CASPubMed Google Scholar
Kingsbury, M. A. et al. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc. Natl Acad. Sci. USA102, 6143–6147 (2005). CASPubMedPubMed Central Google Scholar
Rehen, S. K. et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl Acad. Sci. USA98, 13361–13366 (2001). CASPubMedPubMed Central Google Scholar
Li, M. et al. The ATM–p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc. Natl Acad. Sci. USA107, 14188–14193 (2010). CASPubMedPubMed Central Google Scholar
Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science330, 517–521 (2010). CASPubMed Google Scholar
Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell11, 25–36 (2007). CASPubMed Google Scholar
Weaver, B. A. & Cleveland, D. W. The role of aneuploidy in promoting and suppressing tumors. J. Cell Biol.185, 935–937 (2009). CASPubMedPubMed Central Google Scholar
Weaver, B. A. & Cleveland, D. W. The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell14, 431–433 (2008). CASPubMedPubMed Central Google Scholar
Manning, A. L., Longworth, M. S. & Dyson, N. J. Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev.24, 1364–1376 (2010). CASPubMedPubMed Central Google Scholar
Zheng, L. & Lee, W. H. Retinoblastoma tumor suppressor and genome stability. Adv. Cancer Res.85, 13–50 (2002). CASPubMed Google Scholar
Knudsen, E. S., Sexton, C. R. & Mayhew, C. N. Role of the retinoblastoma tumor suppressor in the maintenance of genome integrity. Curr. Mol. Med.6, 749–757 (2006). CASPubMed Google Scholar
Manning, A. L. & Dyson, N. J. pRB, a tumor suppressor with a stabilizing presence. Trends Cell Biol.21, 433–441 (2011). CASPubMedPubMed Central Google Scholar
Coschi, C. H. et al. Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev.24, 1351–1363 (2010). CASPubMedPubMed Central Google Scholar
van Harn, T. et al. Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev.24, 1377–1388 (2010). CASPubMedPubMed Central Google Scholar
Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C. & Benezra, R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell19, 701–714 (2011). This study shows that the overexpression of the mitotic checkpoint protein MAD2 is required for the CIN that results from the inhibition of the RB and p53 pathways, two pathways that are frequently inactivated in human cancer. CASPubMedPubMed Central Google Scholar
Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell11, 9–23 (2007). CASPubMed Google Scholar
Pavelka, N., Rancati, G. & Li, R. Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer. Curr. Opin. Cell Biol.22, 809–815 (2010). CASPubMedPubMed Central Google Scholar
Rancati, G. et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell135, 879–893 (2008). This work demonstrates the beneficial and synergistic effects of small changes in gene expression owing to aneuploidy in yeast with defects in cytokinesis. CASPubMedPubMed Central Google Scholar
Bianchi, A. B., Aldaz, C. M. & Conti, C. J. Nonrandom duplication of the chromosome bearing a mutated Ha-ras-1 allele in mouse skin tumors. Proc. Natl Acad. Sci. USA87, 6902–6906 (1990). CASPubMedPubMed Central Google Scholar
Zhuang, Z. et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nature Genet.20, 66–69 (1998). CASPubMed Google Scholar
Fischer, J. et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene17, 733–739 (1998). CASPubMed Google Scholar
Beghini, A. et al. Trisomy 4 leading to duplication of a mutated KIT allele in acute myeloid leukemia with mast cell involvement. Cancer Genet. Cytogenet.119, 26–31 (2000). CASPubMed Google Scholar
Langabeer, S. E., Beghini, A. & Larizza, L. AML with t(8;21) and trisomy 4: possible involvement of c-kit? Leukemia17, 1915; author reply 1915–1916 (2003). CASPubMed Google Scholar
Sotillo, R., Schvartzman, J. M., Socci, N. D. & Benezra, R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature464, 436–440 (2010). This study shows that KRAS-driven tumours that develop CIN and aneuploidy owing to transient MAD2 overexpression recur at a markedly elevated rate after the withdrawal of theKRASoncogene. CASPubMedPubMed Central Google Scholar
Malinge, S., Izraeli, S. & Crispino, J. D. Insights into the manifestations, outcomes and mechanisms of leukemogenesis in Down syndrome. Blood113, 2619–2628 (2009). CASPubMedPubMed Central Google Scholar
Baek, K. H. et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature459, 1126–1130 (2009). CASPubMedPubMed Central Google Scholar
Ng, A. P. et al. Trisomy of Erg is required for myeloproliferation in a mouse model of Down syndrome. Blood115, 3966–3969 (2010). CASPubMed Google Scholar
Baetz, K., Measday, V. & Andrews, B. Revealing hidden relationships among yeast genes involved in chromosome segregation using systematic synthetic lethal and synthetic dosage lethal screens. Cell Cycle5, 592–595 (2006). CASPubMed Google Scholar
Measday, V. et al. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc. Natl Acad. Sci. USA102, 13956–13961 (2005). CASPubMedPubMed Central Google Scholar
Lin, H. et al. Polyploids require Bik1 for kinetochore–microtubule attachment. J. Cell Biol.155, 1173–1184 (2001). CASPubMedPubMed Central Google Scholar
Kramer, A., Maier, B. & Bartek, J. Centrosome clustering and chromosomal (in) stability: A matter of life and death. Mol. Oncol.5, 324–335 (2011). PubMedPubMed Central Google Scholar
Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev.22, 2189–2203 (2008). In this study, a genome-wide siRNA screen was used to identify new mechanisms by which cells suppress multipolar divisions. CASPubMedPubMed Central Google Scholar
Tang, Y. C., Williams, B. R., Siegel, J. J. & Amon, A. Identification of aneuploidy-selective antiproliferation compounds. Cell144, 499–512 (2011). This study identifies drugs with aneuploidy-specific lethality. CASPubMedPubMed Central Google Scholar
Chng, W. J. et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res.67, 2982–2989 (2007). CASPubMed Google Scholar
Mateos, M. V. et al. Outcome according to cytogenetic abnormalities and DNA ploidy in myeloma patients receiving short induction with weekly bortezomib followed by maintenace. Blood118, 4547–4553 (2011). CASPubMed Google Scholar
Usmani, S. Z., Bona, R. & Li, Z. 17 AAG for HSP90 inhibition in cancer—from bench to bedside. Curr. Mol. Med.9, 654–664 (2009). CASPubMed Google Scholar
Taub, J. W. & Ge, Y. Down syndrome, drug metabolism and chromosome 21. Pediatr. Blood Cancer44, 33–39 (2005). PubMed Google Scholar
Zhang, L. et al. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin. Cancer Res.4, 2169–2177 (1998). CASPubMed Google Scholar
Belkov, V. M. et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood93, 1643–1650 (1999). CASPubMed Google Scholar
Meaburn, K. J., Parris, C. N. & Bridger, J. M. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma114, 263–274 (2005). PubMed Google Scholar
Doherty, A. M. & Fisher, E. M. Microcell-mediated chromosome transfer (MMCT): small cells with huge potential. Mamm. Genome14, 583–592 (2003). PubMed Google Scholar
Upender, M. B. et al. Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res.64, 6941–6949 (2004). CASPubMedPubMed Central Google Scholar
Hughes, T. R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genet.25, 333–337 (2000). CASPubMed Google Scholar
Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science313, 367–370 (2006). This study demonstrates that that thein vivoacquisition of extra copies of an isochromosome byCandida albicansconfers resistance to fluconazole through the action of two specific genes in a copy-number-dependent manner. CASPubMedPubMed Central Google Scholar
Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol.68, 624–641 (2008). CASPubMed Google Scholar
Duesberg, P. et al. How aneuploidy may cause cancer and genetic instability. Anticancer Res.19, 4887–4906 (1999). CASPubMed Google Scholar
Duesberg, P., Li, R., Fabarius, A. & Hehlmann, R. Aneuploidy and cancer: from correlation to causation. Contrib. Microbiol.13, 16–44 (2006). PubMed Google Scholar
Su, X. et al. Mechanism underlying the dual-mode regulation of microtubule dynamics by Kip/3kinesin-8. Mol. Cell43, 751–763 (2011). CASPubMedPubMed Central Google Scholar
Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature437, 1043–1047 (2005). CASPubMed Google Scholar