Neural stem cell therapies for enteric nervous system disorders (original) (raw)
Furness, J. B. The Enteric Nervous System (John Wiley and Sons Ltd., 2006). Google Scholar
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol.9, 286–294 (2012). ArticleCASPubMed Google Scholar
Gershon, M. D. The enteric nervous system: a second brain. Hosp. Pract.34, 31–42 (1999). ArticleCAS Google Scholar
Burns, A. J., Pasricha, P. J. & Young, H. M. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential. Neurogastroenterol. Motil.16 (Suppl. 1), 3–7 (2004). ArticlePubMed Google Scholar
Heanue, T. A. & Pachnis, V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat. Rev. Neurosci.8, 466–479 (2007). ArticleCASPubMed Google Scholar
Hotta, R., Natarajan, D., Burns, A. J. & Thapar, N. Stem cells for GI motility disorders. Curr. Opin. Pharmacol.11, 617–623 (2011). ArticleCASPubMed Google Scholar
Liu, M. T., Kuan, Y. H., Wang, J., Hen, R. & Gershon, M. D. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J. Neurosci.29, 9683–9699 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kenny, S. E., Tam, P. K. & Garcia-Barcelo, M. Hirschsprung's disease. Semin. Pediatr. Surg.19, 194–200 (2010). ArticlePubMed Google Scholar
Goldstein, A., Hofstra, R. & Burns, A. Building a brain in the gut: development of the enteric nervous system. Clin. Genet.83, 307–316 (2013). ArticleCASPubMed Google Scholar
Obermayr, F., Hotta, R., Enomoto, H. & Young, H. M. Development and developmental disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol.10, 43–57 (2013). ArticleCASPubMed Google Scholar
Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol.305, G1–G24 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sasselli, V., Pachnis, V. & Burns, A. J. The enteric nervous system. Dev. Biol.366, 64–73 (2012). ArticleCASPubMed Google Scholar
Kubota, M., Suita, S., Kamimura, T., Ito, Y. & Szurszewski, J. H. Electrophysiological properties of the aganglionic segment in Hirschsprung's disease. Surgery131, S288–S293 (2002). ArticlePubMed Google Scholar
Almond, S., Lindley, R. M., Kenny, S. E., Connell, M. G. & Edgar, D. H. Characterisation and transplantation of enteric nervous system progenitor cells. Gut56, 489–496 (2007). ArticlePubMed Google Scholar
Micci, M. A. et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology129, 1817–1824 (2005). ArticleCASPubMed Google Scholar
Hotta, R. et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J. Clin. Invest.123, 1182–1191 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lindley, R. M. et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology135, 205–216 (2008). ArticlePubMed Google Scholar
Natarajan, D., Grigoriou, M., Marcos-Gutierrez, C. V., Atkins, C. & Pachnis, V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development126, 157–168 (1999). ArticleCASPubMed Google Scholar
Dong, Y. L. et al. Neural stem cell transplantation rescues rectum function in the aganglionic rat. Transplant. Proc.40, 3646–3652 (2008). ArticleCASPubMed Google Scholar
Liu, W., Wu, R. D., Dong, Y. L. & Gao, Y. M. Neuroepithelial stem cells differentiate into neuronal phenotypes and improve intestinal motility recovery after transplantation in the aganglionic colon of the rat. Neurogastroenterol. Motil.19, 1001–1009 (2007). CASPubMed Google Scholar
Thrasivoulou, C. et al. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell5, 247–257 (2006). ArticleCASPubMed Google Scholar
Wade, P. R. & Hornby, P. J. Age-related neurodegenerative changes and how they affect the gut. Sci. Aging Knowledge Environ.2005, pe8 (2005). ArticlePubMed Google Scholar
Kobayashi, H., O'Briain, D. S. & Puri, P. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung's disease. Gut35, 1605–1607 (1994). ArticleCASPubMedPubMed Central Google Scholar
van den Berg, M. M. et al. Morphological changes of the enteric nervous system, interstitial cells of Cajal, and smooth muscle in children with colonic motility disorders. J. Pediatr. Gastroenterol. Nutr.48, 22–29 (2009). ArticleCASPubMed Google Scholar
Hotta, R., Anderson, R. B., Kobayashi, K., Newgreen, D. F. & Young, H. M. Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies. Neurogastroenterol. Motil.22, 331–e86 (2010). ArticleCASPubMed Google Scholar
Walzer, N. & Hirano, I. Achalasia. Gastroenterol. Clin. North Am.37, 807–825 (2008). ArticlePubMed Google Scholar
Metzger, M., Caldwell, C., Barlow, A. J., Burns, A. J. & Thapar, N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology136, 2214–2225 (2009). ArticleCASPubMed Google Scholar
De Giorgio, R. et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology126, 1872–1883 (2004). ArticlePubMed Google Scholar
Oh, J. H. & Pasricha, P. J. Recent advances in the pathophysiology and treatment of gastroparesis. J. Neurogastroenterol. Motil.19, 18–24 (2013). ArticlePubMedPubMed Central Google Scholar
Waseem, S., Islam, S., Kahn, G., Moshiree, B. & Talley, N. J. Spectrum of gastroparesis in children. J. Pediatr. Gastroenterol. Nutr.55, 166–172 (2012). ArticlePubMed Google Scholar
Vanormelingen, C., Tack, J. & Andrews, C. N. Diabetic gastroparesis. Br. Med. Bull.105, 213–230 (2013). ArticleCASPubMed Google Scholar
Camilleri, M., Bharucha, A. E. & Farrugia, G. Epidemiology, mechanisms, and management of diabetic gastroparesis. Clin. Gastroenterol. Hepatol.9, 5–12 (2011). ArticlePubMed Google Scholar
Takahashi, T., Nakamura, K., Itoh, H., Sima, A. A. & Owyang, C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology113, 1535–1544 (1997). ArticleCASPubMed Google Scholar
Wrzos, H. F., Cruz, A., Polavarapu, R., Shearer, D. & Ouyang, A. Nitric oxide synthase (NOS) expression in the myenteric plexus of streptozotocin-diabetic rats. Dig. Dis. Sci.42, 2106–2110 (1997). ArticleCASPubMed Google Scholar
Watkins, C. C. et al. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J. Clin. Invest.106, 373–384 (2000). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, H. et al. A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J. Gastroenterol.41, 1076–1087 (2006). ArticleCASPubMed Google Scholar
Grover, M. et al. Clinical-histological associations in gastroparesis: results from the Gastroparesis Clinical Research Consortium. Neurogastroenterol. Motil.24, 531–539 (2012). ArticleCASPubMed Google Scholar
Forster, J. et al. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J. Gastrointest. Surg.9, 102–108 (2005). ArticlePubMed Google Scholar
McCann, C. J. et al. Establishment of pacemaker activity in tissues allotransplanted with interstitial cells of Cajal. Neurogastroenterol. Motil.25, e418–e428 (2013). ArticleCASPubMedPubMed Central Google Scholar
Vanderwinden, J. M., Mailleux, P., Schiffmann, S. N., Vanderhaeghen, J. J. & De Laet, M. H. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N. Engl. J. Med.327, 511–515 (1992). ArticleCASPubMed Google Scholar
Rivera, L. R., Poole, D. P., Thacker, M. & Furness, J. B. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol. Motil.23, 980–988 (2011). ArticleCASPubMed Google Scholar
Peeters, B., Benninga, M. A. & Hennekam, R. C. Infantile hypertrophic pyloric stenosis—genetics and syndromes. Nat. Rev. Gastroenterol. Hepatol.9, 646–660 (2012). ArticleCASPubMed Google Scholar
Vanderwinden, J. M. et al. The pathology of infantile hypertrophic pyloric stenosis after healing. J. Pediatr. Surg.31, 1530–1534 (1996). ArticleCASPubMed Google Scholar
Heneyke, S., Smith, V. V., Spitz, L. & Milla, P. J. Chronic intestinal pseudo-obstruction: treatment and long term follow up of 44 patients. Arch. Dis. Child.81, 21–27 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mousa, H., Hyman, P. E., Cocjin, J., Flores, A. F. & Di Lorenzo, C. Long-term outcome of congenital intestinal pseudoobstruction. Dig. Dis. Sci.47, 2298–2305 (2002). ArticlePubMed Google Scholar
Kapur, R. P. Neuronal dysplasia: a controversial pathological correlate of intestinal pseudo-obstruction. Am. J. Med. Genet. A122A, 287–293 (2003). ArticlePubMed Google Scholar
Meier-Ruge, W. A., Bruder, E. & Kapur, R. P. Intestinal neuronal dysplasia type B: one giant ganglion is not good enough. Pediatr. Dev. Pathol.9, 444–452 (2006). ArticlePubMed Google Scholar
Knowles, C. H. et al. Gastrointestinal neuromuscular pathology: guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta Neuropathol.118, 271–301 (2009). ArticlePubMed Google Scholar
Knowles, C. H. et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut59, 882–887 (2010). ArticlePubMed Google Scholar
Knowles, C. H. et al. Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract—report on behalf of the Gastro 2009 International Working Group. Neurogastroenterol. Motil.23, 115–124 (2011). ArticleCASPubMed Google Scholar
Knowles, C. H., Lindberg, G., Panza, E. & De Giorgio, R. New perspectives in the diagnosis and management of enteric neuropathies. Nat. Rev. Gastroenterol. Hepatol.10, 206–218 (2013). ArticleCASPubMed Google Scholar
De Giorgio, R. et al. Chronic intestinal pseudo-obstruction related to viral infections. Transplant. Proc.42, 9–14 (2010). ArticleCASPubMed Google Scholar
Bassotti, G. & Villanacci, V. Slow transit constipation: a functional disorder becomes an enteric neuropathy. World J. Gastroenterol.12, 4609–4613 (2006). ArticlePubMedPubMed Central Google Scholar
Knowles, C. H. & Farrugia, G. Gastrointestinal neuromuscular pathology in chronic constipation. Best Pract. Res. Clin. Gastroenterol.25, 43–57 (2011). ArticlePubMedPubMed Central Google Scholar
Giorgio, V. et al. High-resolution colonic manometry accurately predicts colonic neuromuscular pathological phenotype in pediatric slow transit constipation. Neurogastroenterol. Motil.25, 70–78 (2013). ArticleCASPubMed Google Scholar
Brehmer, A. et al. Experimental hypertrophy of myenteric neurones in the pig: a morphometric study. Neurogastroenterol. Motil.12, 155–162 (2000). ArticleCASPubMed Google Scholar
Chang, I. Y. et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J. Physiol.536, 555–568 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bharucha, A. E. et al. Prevalence and burden of fecal incontinence: a population-based study in women. Gastroenterology129, 42–49 (2005). ArticlePubMed Google Scholar
Edwards, N. I. & Jones, D. The prevalence of faecal incontinence in older people living at home. Age Ageing30, 503–507 (2001). ArticleCASPubMed Google Scholar
Rao, S. S. Pathophysiology of adult fecal incontinence. Gastroenterology126, S14–S22 (2004). ArticlePubMed Google Scholar
Raghavan, S. et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology141, 310–319 (2011). ArticlePubMed Google Scholar
Ronaghi, M., Erceg, S., Moreno-Manzano, V. & Stojkovic, M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells28, 93–99 (2010). ArticlePubMed Google Scholar
Panza, E. et al. Genetics of human enteric neuropathies. Prog. Neurobiol.96, 176–189 (2012). ArticleCASPubMed Google Scholar
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). ArticleCASPubMed Google Scholar
Liu, Q. et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med.1, 266–278 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol.19, 1129–1133 (2001). ArticleCASPubMed Google Scholar
Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell110, 385–397 (2002). ArticleCASPubMed Google Scholar
Sasselli, V., Micci, M. A., Kahrig, K. M. & Pasricha, P. J. Evaluation of ES-derived neural progenitors as a potential source for cell replacement therapy in the gut. BMC Gastroenterol.12, 81 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hotta, R. et al. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells27, 2896–2905 (2009). ArticleCASPubMed Google Scholar
Kawaguchi, J., Nichols, J., Gierl, M. S., Faial, T. & Smith, A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development137, 693–704 (2010). ArticleCASPubMedPubMed Central Google Scholar
Li, J. Y., Christophersen, N. S., Hall, V., Soulet, D. & Brundin, P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci.31, 146–153 (2008). ArticlePubMedCAS Google Scholar
McLaren, A. Ethical and social considerations of stem cell research. Nature414, 129–131 (2001). ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Yung, J. S., Tam, P. K. & Ngan, E. S. Pluripotent stem cell for modeling neurological diseases. Exp. Cell Res.319, 177–184 (2013). ArticleCASPubMed Google Scholar
Ueda, T. et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem. Biophys. Res. Commun.391, 38–42 (2010). ArticleCASPubMed Google Scholar
Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer11, 268–277 (2011). ArticleCASPubMed Google Scholar
Li, W. & Xiang, A. P. Safeguarding clinical translation of pluripotent stem cells with suicide genes. Organogenesis9 34–39 (2013). ArticlePubMedPubMed Central Google Scholar
Chen, F. et al. Suicide gene-mediated ablation of tumor-initiating mouse pluripotent stem cells. Biomaterials34, 1701–1711 (2013). ArticleCASPubMed Google Scholar
Davis, A. A. & Temple, S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature372, 263–266 (1994). ArticleCASPubMed Google Scholar
Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. & Morrison, S. J. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron35, 643–656 (2002). ArticleCASPubMed Google Scholar
Schafer, K. H., Micci, M. A. & Pasricha, P. J. Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol. Motil.21, 103–112 (2009). ArticlePubMed Google Scholar
Sidebotham, E. L., Kenny, S. E., Lloyd, D. A., Vaillant, C. R. & Edgar, D. H. Location of stem cells for the enteric nervous system. Pediatr. Surg. Int.18, 581–585 (2002). ArticleCASPubMed Google Scholar
Bondurand, N., Natarajan, D., Thapar, N., Atkins, C. & Pachnis, V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development130, 6387–6400 (2003). ArticleCASPubMed Google Scholar
Dupin, E. & Sommer, L. Neural crest progenitors and stem cells: from early development to adulthood. Dev. Biol.366, 83–95 (2012). ArticleCASPubMed Google Scholar
Rauch, U., Hansgen, A., Hagl, C., Holland-Cunz, S. & Schafer, K. H. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int. J. Colorectal Dis.21, 554–559 (2006). ArticlePubMed Google Scholar
Lebouvier, T. et al. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol. Motil.22, e11–e14 (2010). CASPubMed Google Scholar
Rajan, E. et al. Endoscopic “no hole” full-thickness biopsy of the stomach to detect myenteric ganglia. Gastrointest. Endosc.68, 301–307 (2008). ArticlePubMedPubMed Central Google Scholar
Neunlist, M. et al. Colonic endoscopic full-thickness biopsies: from the neuropathological analysis of the myenteric plexus to the functional study of neuromuscular transmission. Gastrointest. Endosc.73, 1029–1034 (2011). ArticlePubMed Google Scholar
Becker, L., Kulkarni, S., Tiwari, G., Micci, M. A. & Pasricha, P. J. Divergent fate and origin of neurosphere-like bodies from different layers of the gut. Am. J. Physiol. Gastrointest. Liver Physiol.302, G958–G965 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kruger, G. M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron35, 657–669 (2002). ArticleCASPubMedPubMed Central Google Scholar
Iwashita, T., Kruger, G. M., Pardal, R., Kiel, M. J. & Morrison, S. J. Hirschsprung disease is linked to defects in neural crest stem cell function. Science301, 972–976 (2003). ArticleCASPubMedPubMed Central Google Scholar
Thapar, N., Natarajan, D., Caldwell, C., Burns, A. J. & Pachnis, V. Isolation of enteric nervous system progenitors from Hirschsprung's-like gut. Neurogastroenterol. Motil.18, A318 (2006). Google Scholar
Sun, N. F. et al. Coexpression of recombinant adenovirus carrying GDNF and EDNRB genes in neural stem cells in vitro. Cell Biol. Int.37, 458–463 (2013). ArticleCASPubMed Google Scholar
Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132, 661–680 (2008). ArticleCASPubMed Google Scholar
Micci, M. A., Learish, R. D., Li, H., Abraham, B. P. & Pasricha, P. J. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology121, 757–766 (2001). ArticleCASPubMed Google Scholar
Druckenbrod, N. R. & Epstein, M. L. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development136, 3195–3203 (2009). ArticleCASPubMed Google Scholar
Meijers, J. H. et al. Colonization characteristics of enteric neural crest cells: embryological aspects of Hirschsprung's disease. J. Pediatr. Surg.27, 811–814 (1992). ArticleCASPubMed Google Scholar
Martucciello, G. et al. GDNF deficit in Hirschsprung's disease. J. Pediatr. Surg.33, 99–102 (1998). ArticleCASPubMed Google Scholar
Bondurand, N., Natarajan, D., Barlow, A., Thapar, N. & Pachnis, V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development133, 2075–2086 (2006). ArticleCASPubMed Google Scholar
Barlow, A., de Graaff, E. & Pachnis, V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron40, 905–916 (2003). ArticleCASPubMed Google Scholar
Natarajan, D., Marcos-Gutierrez, C., Pachnis, V. & de Graaff, E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development129, 5151–5160 (2002). ArticleCASPubMed Google Scholar
Young, H. M. et al. GDNF is a chemoattractant for enteric neural cells. Dev. Biol.229, 503–516 (2001). ArticleCASPubMed Google Scholar
Theocharatos, S. et al. Regulation of progenitor cell proliferation and neuronal differentiation in enteric nervous system neurospheres. PLoS ONE8, e54809 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hagl, C. et al. Expression and function of the transforming growth factor-β system in the human and rat enteric nervous system. Neurogastroenterol. Motil.25, 601–e464 (2013). ArticleCASPubMed Google Scholar
Hagl, C. I. et al. Enteric neurons from postnatal Fgf2 knockout mice differ in neurite outgrowth responses. Auton. Neurosci.170, 56–61 (2012). ArticleCASPubMed Google Scholar
Hagl, C. I. et al. The microenvironment in the Hirschsprung's disease gut supports myenteric plexus growth. Int. J. Colorectal Dis.27, 817–829 (2012). ArticlePubMed Google Scholar
Raghavan, S., Gilmont, R. R. & Bitar, K. N. Neuroglial differentiation of adult enteric neuronal progenitor cells as a function of extracellular matrix composition. Biomaterials34, 6649–6658 (2013). ArticleCASPubMedPubMed Central Google Scholar
Becker, L., Peterson, J., Kulkarni, S. & Pasricha, P. J. Ex vivo neurogenesis within enteric ganglia occurs in a PTEN dependent manner. PLoS ONE8, e59452 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu, W., Yue, W. & Wu, R. Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon. Stem Cell Res. Ther.4, 7 (2013). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. M., Nemeth, T. L. & McDonald, R. A. Current immunosuppressive agents: efficacy, side effects, and utilization. Pediatr. Clin. North Am.50, 1283–1300 (2003). ArticlePubMed Google Scholar
Odorico, J. S., Kaufman, D. S. & Thomson, J. A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells19, 193–204 (2001). ArticleCASPubMed Google Scholar
Mountford, J. C. Human embryonic stem cells: origins, characteristics and potential for regenerative therapy. Transfus. Med.18, 1–12 (2008). ArticleCASPubMed Google Scholar
Micci, M. A. & Pasricha, P. J. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev. Dyn.236, 33–43 (2007). ArticleCASPubMed Google Scholar
Martucciello, G. et al. Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur. J. Pediatr. Surg.17, 34–40 (2007). ArticleCASPubMed Google Scholar
Tsai, Y. H., Murakami, N. & Gariepy, C. E. Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol. Motil.23, 362–369 (2011). ArticlePubMed Google Scholar
Jayasinghe, S. N. Bio-electrosprays: from bio-analytics to a generic tool for the health sciences. Analyst136, 878–890 (2011). ArticleCASPubMed Google Scholar
Burns, A. J., Roberts, R. R., Bornstein, J. C. & Young, H. M. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Semin. Pediatr. Surg.18, 196–205 (2009). ArticlePubMed Google Scholar
Sadowski, D. C., Ackah, F., Jiang, B. & Svenson, L. W. Achalasia: incidence, prevalence and survival. A population-based study. Neurogastroenterol. Motil.22, e256–e261 (2010). ArticleCASPubMed Google Scholar
Marlais, M., Fishman, J. R., Fell, J. M., Haddad, M. J. & Rawat, D. J. UK incidence of achalasia: an 11-year national epidemiological study. Arch. Dis. Child.96, 192–194 (2011). ArticleCASPubMed Google Scholar
Pedersen, R. N. et al. Infantile hypertrophic pyloric stenosis: a comparative study of incidence and other epidemiological characteristics in seven European regions. J. Matern. Fetal Neonatal Med.21, 599–604 (2008). ArticlePubMed Google Scholar
Thapar, N. Clinical picture of intestinal pseudo-obstruction syndrome. J. Pediatr. Gastroenterol. Nutr.53 (Suppl. 2), S58–S59 (2011). PubMed Google Scholar
Mosher, J. T. et al. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev. Biol.303, 1–15 (2007). ArticleCASPubMed Google Scholar
Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest.121, 3412–3424 (2011). ArticleCASPubMedPubMed Central Google Scholar