Tissue-resident memory T cells: local specialists in immune defence (original) (raw)
Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science272, 54–60 (1996). CASPubMed Google Scholar
Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). CASPubMed Google Scholar
Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291, 2413–2417 (2001). CASPubMed Google Scholar
Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature410, 101–105 (2001). CASPubMed Google Scholar
Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med.171, 801–817 (1990). CASPubMed Google Scholar
Mackay, C. R. et al. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur. J. Immunol.22, 887–895 (1992). CASPubMed Google Scholar
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol.10, 524–530 (2009). This paper shows for the first time that TRMcells provide enhanced immunity against infection. CASPubMed Google Scholar
Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science319, 198–202 (2008). CASPubMed Google Scholar
Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med.207, 553–564 (2010). CASPubMedPubMed Central Google Scholar
Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity20, 551–562 (2004). CASPubMed Google Scholar
Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature483, 227–231 (2012). CASPubMedPubMed Central Google Scholar
Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol.14, 509–513 (2013). CASPubMedPubMed Central Google Scholar
Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science346, 93–98 (2014). CASPubMedPubMed Central Google Scholar
Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol.187, 5510–5514 (2011). CASPubMedPubMed Central Google Scholar
Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med.212, 1405–1414 (2015). CASPubMedPubMed Central Google Scholar
Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol.13, 309–320 (2013). CASPubMed Google Scholar
Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell161, 737–749 (2015). CASPubMedPubMed Central Google Scholar
Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol.16, 406–414 (2015). CASPubMedPubMed Central Google Scholar
Schenkel, J. M., Fraser, K. A. & Masopust, D. Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J. Immunol.192, 2961–2964 (2014). CASPubMedPubMed Central Google Scholar
Anderson, K. G. et al. Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol.189, 2702–2706 (2012). This paper shows the use of intravascular labelling for the identification of tissue-associated cells. CASPubMedPubMed Central Google Scholar
Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol.14, 1294–1301 (2013). This study defines the developmental pathway and core transcriptional signature of tissue-resident CD103+CD8+ memory T cells. CASPubMed Google Scholar
Skon, C. N. et al. Transcriptional downregulation of S1PR1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol.14, 1285–1293 (2013). This paper provides evidence that the expression of molecules associated with tissue egress needs to be downregulated for TRMcell generation. CASPubMedPubMed Central Google Scholar
Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol.6, 895–901 (2005). CASPubMed Google Scholar
Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol.6, 889–894 (2005). CASPubMedPubMed Central Google Scholar
Tomura, M., Itoh, K. & Kanagawa, O. Naive CD4+ T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function. J. Immunol.184, 4646–4653 (2010). CASPubMed Google Scholar
Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol.188, 4866–4875 (2012). CASPubMedPubMed Central Google Scholar
Hofmann, M., Oschowitzer, A., Kurzhals, S. R., Kruger, C. C. & Pircher, H. Thymus-resident memory CD8+ T cells mediate local immunity. Eur. J. Immunol.43, 2295–2304 (2013). CASPubMed Google Scholar
Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T cell population in murine salivary glands. Proc. Natl Acad. Sci. USA108, 16741–16746 (2011). CASPubMed Google Scholar
Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA107, 17872–17879 (2010). CASPubMed Google Scholar
Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc.9, 209–222 (2014). CASPubMedPubMed Central Google Scholar
Tse, S. W., Cockburn, I. A., Zhang, H., Scott, A. L. & Zavala, F. Unique transcriptional profile of liver-resident memory CD8+ T cells induced by immunization with malaria sporozoites. Genes Immun.14, 302–309 (2013). CASPubMedPubMed Central Google Scholar
Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of TReg cells and macrophages in adipose tissue. Nat. Immunol.16, 85–95 (2015). CASPubMed Google Scholar
Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest.123, 1444–1456 (2013). CASPubMedPubMed Central Google Scholar
Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife3, e01659 (2014). PubMedPubMed Central Google Scholar
Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA–1-ICAM-1 interactions. J. Exp. Med.208, 1179–1188 (2011). CASPubMedPubMed Central Google Scholar
Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol.176, 4431–4439 (2006). CASPubMed Google Scholar
Mizukawa, Y. et al. Direct evidence for interferon-γ production by effector-memory-type intraepidermal T cells residing at an effector site of immunopathology in fixed drug eruption. Am. J. Pathol.161, 1337–1347 (2002). CASPubMedPubMed Central Google Scholar
Cheuk, S. et al. Epidermal TH22 and TC17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol.192, 3111–3120 (2014). CASPubMedPubMed Central Google Scholar
Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Trans. Med.4, 117ra7 (2012). Google Scholar
Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med.204, 595–603 (2007). CASPubMedPubMed Central Google Scholar
Zhu, J. et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat. Med.15, 886–892 (2009). CASPubMedPubMed Central Google Scholar
Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature477, 216–219 (2011). CASPubMed Google Scholar
Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature497, 494–497 (2013). CASPubMedPubMed Central Google Scholar
Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity38, 187–197 (2013). CASPubMed Google Scholar
Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell159, 814–828 (2014). References 45 and 46 provide a comprehensive evaluation of T cell distribution in human tissues. CASPubMedPubMed Central Google Scholar
Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol.15, 1104–1115 (2014). CASPubMedPubMed Central Google Scholar
Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol.12, 749–761 (2012). CASPubMedPubMed Central Google Scholar
Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol.6, 1236–1244 (2005). CASPubMed Google Scholar
Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity33, 229–240 (2010). CASPubMedPubMed Central Google Scholar
Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol.189, 3462–3471 (2012). CASPubMed Google Scholar
Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity41, 633–645 (2014). CASPubMedPubMed Central Google Scholar
Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med.21, 647–653 (2015). CASPubMedPubMed Central Google Scholar
Sowell, R. T., Rogozinska, M., Nelson, C. E., Vezys, V. & Marzo, A. L. Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. J. Immunol.193, 2067–2071 (2014). CASPubMedPubMed Central Google Scholar
Slutter, B., Pewe, L. L., Kaech, S. M. & Harty, J. T. Lung airway-surveilling CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. Immunity39, 939–948 (2013). CASPubMed Google Scholar
Mackay, L. K. et al. Cutting Edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol.194, 2059–2063 (2015). CASPubMed Google Scholar
Ely, K. H., Cookenham, T., Roberts, A. D. & Woodland, D. L. Memory T cell populations in the lung airways are maintained by continual recruitment. J. Immunol.176, 537–543 (2006). CASPubMed Google Scholar
Ugur, M., Schulz, O., Menon, M. B., Krueger, A. & Pabst, O. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun.5, 4821 (2014). CASPubMed Google Scholar
Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity40, 747–757 (2014). CASPubMedPubMed Central Google Scholar
Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity39, 687–696 (2013). PubMedPubMed Central Google Scholar
Hu, Y., Lee, Y. T., Kaech, S. M., Garvy, B. & Cauley, L. S. SMAD4 promotes differentiation of effector and circulating memory CD8 T cells but is dispensable for tissue-resident memory CD8 T cells. J. Immunol.194, 2407–2414 (2015). CASPubMedPubMed Central Google Scholar
Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature462, 510–513 (2009). CASPubMedPubMed Central Google Scholar
Laidlaw, B. J., Craft, J. E. & Kaech, S. M. The multifacted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. (in the press).
Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA109, 7037–7042 (2012). CASPubMed Google Scholar
Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature491, 463–467 (2012). CASPubMedPubMed Central Google Scholar
Mackay, L. K. et al. Maintenance of T cell function in the face of chronic antigen stimulation and repeated reactivation for a latent virus infection. J. Immunol.188, 2173–2178 (2012). CASPubMedPubMed Central Google Scholar
Zammit, D. J., Turner, D. L., Klonowski, K. D., Lefrançois, L. & Cauley, L. S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity24, 439–449 (2006). CASPubMedPubMed Central Google Scholar
Grundemann, C. et al. Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J. Immunol.176, 1311–1315 (2006). PubMed Google Scholar
Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol.176, 2079–2083 (2006). This paper shows that the tissue microenvironment influences local T cell differentiation. CASPubMed Google Scholar
Lee, Y. T. et al. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol.85, 4085–4094 (2011). CASPubMedPubMed Central Google Scholar
Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA111, 5307–5312 (2014). CASPubMed Google Scholar
Kadow, S. et al. Aryl hydrocarbon receptor is critical for homeostasis of invariant γδ T cells in the murine epidermis. J. Immunol.187, 3104–3110 (2011). CASPubMed Google Scholar
Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell147, 629–640 (2011). CASPubMed Google Scholar
Naik, S. et al. Commensal–dendritic cell interaction specifies a unique protective skin immune signature. Nature520, 104–108 (2015). CASPubMedPubMed Central Google Scholar
Vezys, V. et al. Memory CD8 T cell compartment grows in size with immunological experience. Nature457, 196–199 (2009). CASPubMed Google Scholar
Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA109, 19739–19744 (2012). CASPubMed Google Scholar
Mueller, S. N., Zaid, A. & Carbone, F. R. Tissue-resident T cells: dynamic players in skin immunity. Front. Immunol.5, 332 (2014). PubMedPubMed Central Google Scholar
Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol.15, 1064–1069 (2014). CASPubMed Google Scholar
Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity26, 827–841 (2007). CASPubMedPubMed Central Google Scholar
Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol.9, 153–161 (2009). CASPubMed Google Scholar
Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol.4, 225–234 (2003). CASPubMed Google Scholar
Yang, L., Yu, Y., Kalwani, M., Tseng, T.-W. J. & Baltimore, D. Homeostatic cytokines orchestrate the segregation of CD4 and CD8 memory T cell reservoirs in mice. Blood118, 3039–3050 (2011). CASPubMedPubMed Central Google Scholar
Fraser, K. A., Schenkel, J. M., Jameson, S. C., Vezys, V. & Masopust, D. Preexisting high frequencies of memory CD8+ T cells favor rapid memory differentiation and preservation of proliferative potential upon boosting. Immunity39, 171–183 (2013). CASPubMedPubMed Central Google Scholar
Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med.15, 293–299 (2009). CASPubMedPubMed Central Google Scholar
Schmidt, N. W. et al. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc. Natl Acad. Sci. USA105, 14017–14022 (2008). CASPubMed Google Scholar
Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science346, 98–101 (2014). CASPubMedPubMed Central Google Scholar
McMaster, S. R. et al. Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity. PLoS ONE10, e0115725 (2015). PubMedPubMed Central Google Scholar
Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science346, 101–105 (2014). References 86 and 88 show that TRMcells can function as innate sensors of infection, triggering an antiviral state in the tissue. CASPubMed Google Scholar
Stary, G. et al. Vaccines. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science348, aaa8205 (2015). PubMedPubMed Central Google Scholar
Turner, D. L. & Farber, D. L. Mucosal resident memory CD4 T cells in protection and immunopathology. Front. Immunol.5, 331 (2014). PubMedPubMed Central Google Scholar
Yawalkar, N., Hunger, R. E., Pichler, W. J., Braathen, L. R. & Brand, C. U. Human afferent lymph from normal skin contains an increased number of mainly memory/effector CD4+ T cells expressing activation, adhesion and co-stimulatory molecules. Eur. J. Immunol.30, 491–497 (2000). CASPubMed Google Scholar
Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol.7, 501–510 (2014). CASPubMed Google Scholar
Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol.3, e113 (2005). PubMedPubMed Central Google Scholar
Burzyn, D., Benoist, C. & Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol.14, 1007–1013 (2013). CASPubMedPubMed Central Google Scholar
Smigiel, K. S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med.211, 121–136 (2014). CASPubMedPubMed Central Google Scholar
Chennupati, V. et al. Intra- and intercompartmental movement of γδ T cells: intestinal intraepithelial and peripheral γδ T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol.185, 5160–5168 (2010). CASPubMed Google Scholar
Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity38, 769–781 (2013). CASPubMedPubMed Central Google Scholar
Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity27, 281–295 (2007). CASPubMedPubMed Central Google Scholar
Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science302, 1041–1043 (2003). CASPubMed Google Scholar
Yang, C. Y. et al. The transcriptional regulators ID2 and ID3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol.12, 1221–1229 (2011). CASPubMed Google Scholar
Hawke, S., Stevenson, P. G., Freeman, S. & Bangham, C. R. Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J. Exp. Med.187, 1575–1582 (1998). CASPubMedPubMed Central Google Scholar
Purwar, R. et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE6, e16245 (2011). CASPubMedPubMed Central Google Scholar
Wakim, L. M., Gupta, N., Mintern, J. D. & Villadangos, J. A. Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol.14, 238–245 (2013). CASPubMed Google Scholar
Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol.95, 215–224 (2014). PubMedPubMed Central Google Scholar
Cuburu, N. et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Invest.122, 4606–4620 (2012). CASPubMedPubMed Central Google Scholar